Can i forecast with discontinued data using ARIMA
$begingroup$
I have data for sales on monthly basis but few months information is not in csv file or data file, Can i forecast or fill that missing month with other calculated value from present record.
part of code i am using:
AIC =
SARIMAX_model =
for param in pdq:
for param_seasonal in seasonal_pdq:
try:
mod = sm.tsa.statespace.SARIMAX(train_data,
order=param,
seasonal_order=param_seasonal,
enforce_stationarity=False,
enforce_invertibility=False)
results = mod.fit()
print('SARIMAX{}x{} - AIC:{}'.format(param, param_seasonal, results.aic), end='r')
AIC.append(results.aic)
SARIMAX_model.append([param, param_seasonal])
except:
continue
print('The smallest AIC is {} for model SARIMAX{}x{}'.format(min(AIC), SARIMAX_model[AIC.index(min(AIC))][0],SARIMAX_model[AIC.index(min(AIC))][1]))
# Let's fit this model
mod = sm.tsa.statespace.SARIMAX(train_data,
order=SARIMAX_model[AIC.index(min(AIC))][0],
seasonal_order=SARIMAX_model[AIC.index(min(AIC))][1],
enforce_stationarity=False,
enforce_invertibility=False)
python machine-learning-model forecasting
$endgroup$
add a comment |
$begingroup$
I have data for sales on monthly basis but few months information is not in csv file or data file, Can i forecast or fill that missing month with other calculated value from present record.
part of code i am using:
AIC =
SARIMAX_model =
for param in pdq:
for param_seasonal in seasonal_pdq:
try:
mod = sm.tsa.statespace.SARIMAX(train_data,
order=param,
seasonal_order=param_seasonal,
enforce_stationarity=False,
enforce_invertibility=False)
results = mod.fit()
print('SARIMAX{}x{} - AIC:{}'.format(param, param_seasonal, results.aic), end='r')
AIC.append(results.aic)
SARIMAX_model.append([param, param_seasonal])
except:
continue
print('The smallest AIC is {} for model SARIMAX{}x{}'.format(min(AIC), SARIMAX_model[AIC.index(min(AIC))][0],SARIMAX_model[AIC.index(min(AIC))][1]))
# Let's fit this model
mod = sm.tsa.statespace.SARIMAX(train_data,
order=SARIMAX_model[AIC.index(min(AIC))][0],
seasonal_order=SARIMAX_model[AIC.index(min(AIC))][1],
enforce_stationarity=False,
enforce_invertibility=False)
python machine-learning-model forecasting
$endgroup$
add a comment |
$begingroup$
I have data for sales on monthly basis but few months information is not in csv file or data file, Can i forecast or fill that missing month with other calculated value from present record.
part of code i am using:
AIC =
SARIMAX_model =
for param in pdq:
for param_seasonal in seasonal_pdq:
try:
mod = sm.tsa.statespace.SARIMAX(train_data,
order=param,
seasonal_order=param_seasonal,
enforce_stationarity=False,
enforce_invertibility=False)
results = mod.fit()
print('SARIMAX{}x{} - AIC:{}'.format(param, param_seasonal, results.aic), end='r')
AIC.append(results.aic)
SARIMAX_model.append([param, param_seasonal])
except:
continue
print('The smallest AIC is {} for model SARIMAX{}x{}'.format(min(AIC), SARIMAX_model[AIC.index(min(AIC))][0],SARIMAX_model[AIC.index(min(AIC))][1]))
# Let's fit this model
mod = sm.tsa.statespace.SARIMAX(train_data,
order=SARIMAX_model[AIC.index(min(AIC))][0],
seasonal_order=SARIMAX_model[AIC.index(min(AIC))][1],
enforce_stationarity=False,
enforce_invertibility=False)
python machine-learning-model forecasting
$endgroup$
I have data for sales on monthly basis but few months information is not in csv file or data file, Can i forecast or fill that missing month with other calculated value from present record.
part of code i am using:
AIC =
SARIMAX_model =
for param in pdq:
for param_seasonal in seasonal_pdq:
try:
mod = sm.tsa.statespace.SARIMAX(train_data,
order=param,
seasonal_order=param_seasonal,
enforce_stationarity=False,
enforce_invertibility=False)
results = mod.fit()
print('SARIMAX{}x{} - AIC:{}'.format(param, param_seasonal, results.aic), end='r')
AIC.append(results.aic)
SARIMAX_model.append([param, param_seasonal])
except:
continue
print('The smallest AIC is {} for model SARIMAX{}x{}'.format(min(AIC), SARIMAX_model[AIC.index(min(AIC))][0],SARIMAX_model[AIC.index(min(AIC))][1]))
# Let's fit this model
mod = sm.tsa.statespace.SARIMAX(train_data,
order=SARIMAX_model[AIC.index(min(AIC))][0],
seasonal_order=SARIMAX_model[AIC.index(min(AIC))][1],
enforce_stationarity=False,
enforce_invertibility=False)
python machine-learning-model forecasting
python machine-learning-model forecasting
edited 8 mins ago
bipul kumar
asked Mar 22 at 5:05
bipul kumarbipul kumar
317
317
add a comment |
add a comment |
0
active
oldest
votes
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47768%2fcan-i-forecast-with-discontinued-data-using-arima%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47768%2fcan-i-forecast-with-discontinued-data-using-arima%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown