GPU issue with multiple Inception V3 trained models
$begingroup$
While using multiple (three) trained tensorflow models on python run parallelly as 3 threads (or just 2); I get memory outage but no issue on running each individually on each GPU seperately (2X3 = 6 times) or as per code config below.
GPU config -
GeForce GTX 1060 6GB major totalMemory: 5.93GiB freeMemory: 5.69GiB memoryClockRate(GHz): 1.7715
GeForce GTX 1050 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.392 =>ignored totalMemory: 3.94GiB freeMemory: 3.89GiB
Individual Model Files' relevant (GPU related) code-
1)d = '/gpu:0'
config=tf.ConfigProto()
#config.log_device_placement= True
print("SUNGLASSSSSSSSSSSSSSSSSSSS")
#config.gpu_options.per_process_gpu_memory_fraction = 0.3
config=tf.ConfigProto(gpu_options=tf.GPUOptions(visible_device_list='0'))
with tf.device(d):
with tf.Session(graph=graph, config=config) as sess:
results = sess.run(output_operation.outputs[0], {
input_operation.outputs[0]: t
})
results = np.squeeze(results)
2)
d = '/gpu:1'
config=tf.ConfigProto()
#config.log_device_placement= True
print("HATSSSSSSSSSSSSSSSSSS")
config.gpu_options.per_process_gpu_memory_fraction = 0.35
config=tf.ConfigProto(log_device_placement=False,gpu_options=tf.GPUOptions(allow_growth=True),allow_soft_placement = True)
with tf.Session(graph=graph, config=config) as sess:
results = sess.run(output_operation.outputs[0], {
input_operation.outputs[0]: t
})
results = np.squeeze(results)
3)
d = '/gpu:1'
config=tf.ConfigProto()
#config.log_device_placement= True
print("HANDSNEARFACEEEEEEEEEEEEE")
config.gpu_options.per_process_gpu_memory_fraction = 0.4
#config=tf.ConfigProto(log_device_placement=False,gpu_options=tf.GPUOptions(allow_growth=False),allow_soft_placement = True)
with tf.device(d):
with tf.Session(graph=graph, config=config) as sess:
results = sess.run(output_operation.outputs[0], {
input_operation.outputs[0]: t
})
results = np.squeeze(results)
tensorflow gpu inception
New contributor
$endgroup$
add a comment |
$begingroup$
While using multiple (three) trained tensorflow models on python run parallelly as 3 threads (or just 2); I get memory outage but no issue on running each individually on each GPU seperately (2X3 = 6 times) or as per code config below.
GPU config -
GeForce GTX 1060 6GB major totalMemory: 5.93GiB freeMemory: 5.69GiB memoryClockRate(GHz): 1.7715
GeForce GTX 1050 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.392 =>ignored totalMemory: 3.94GiB freeMemory: 3.89GiB
Individual Model Files' relevant (GPU related) code-
1)d = '/gpu:0'
config=tf.ConfigProto()
#config.log_device_placement= True
print("SUNGLASSSSSSSSSSSSSSSSSSSS")
#config.gpu_options.per_process_gpu_memory_fraction = 0.3
config=tf.ConfigProto(gpu_options=tf.GPUOptions(visible_device_list='0'))
with tf.device(d):
with tf.Session(graph=graph, config=config) as sess:
results = sess.run(output_operation.outputs[0], {
input_operation.outputs[0]: t
})
results = np.squeeze(results)
2)
d = '/gpu:1'
config=tf.ConfigProto()
#config.log_device_placement= True
print("HATSSSSSSSSSSSSSSSSSS")
config.gpu_options.per_process_gpu_memory_fraction = 0.35
config=tf.ConfigProto(log_device_placement=False,gpu_options=tf.GPUOptions(allow_growth=True),allow_soft_placement = True)
with tf.Session(graph=graph, config=config) as sess:
results = sess.run(output_operation.outputs[0], {
input_operation.outputs[0]: t
})
results = np.squeeze(results)
3)
d = '/gpu:1'
config=tf.ConfigProto()
#config.log_device_placement= True
print("HANDSNEARFACEEEEEEEEEEEEE")
config.gpu_options.per_process_gpu_memory_fraction = 0.4
#config=tf.ConfigProto(log_device_placement=False,gpu_options=tf.GPUOptions(allow_growth=False),allow_soft_placement = True)
with tf.device(d):
with tf.Session(graph=graph, config=config) as sess:
results = sess.run(output_operation.outputs[0], {
input_operation.outputs[0]: t
})
results = np.squeeze(results)
tensorflow gpu inception
New contributor
$endgroup$
add a comment |
$begingroup$
While using multiple (three) trained tensorflow models on python run parallelly as 3 threads (or just 2); I get memory outage but no issue on running each individually on each GPU seperately (2X3 = 6 times) or as per code config below.
GPU config -
GeForce GTX 1060 6GB major totalMemory: 5.93GiB freeMemory: 5.69GiB memoryClockRate(GHz): 1.7715
GeForce GTX 1050 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.392 =>ignored totalMemory: 3.94GiB freeMemory: 3.89GiB
Individual Model Files' relevant (GPU related) code-
1)d = '/gpu:0'
config=tf.ConfigProto()
#config.log_device_placement= True
print("SUNGLASSSSSSSSSSSSSSSSSSSS")
#config.gpu_options.per_process_gpu_memory_fraction = 0.3
config=tf.ConfigProto(gpu_options=tf.GPUOptions(visible_device_list='0'))
with tf.device(d):
with tf.Session(graph=graph, config=config) as sess:
results = sess.run(output_operation.outputs[0], {
input_operation.outputs[0]: t
})
results = np.squeeze(results)
2)
d = '/gpu:1'
config=tf.ConfigProto()
#config.log_device_placement= True
print("HATSSSSSSSSSSSSSSSSSS")
config.gpu_options.per_process_gpu_memory_fraction = 0.35
config=tf.ConfigProto(log_device_placement=False,gpu_options=tf.GPUOptions(allow_growth=True),allow_soft_placement = True)
with tf.Session(graph=graph, config=config) as sess:
results = sess.run(output_operation.outputs[0], {
input_operation.outputs[0]: t
})
results = np.squeeze(results)
3)
d = '/gpu:1'
config=tf.ConfigProto()
#config.log_device_placement= True
print("HANDSNEARFACEEEEEEEEEEEEE")
config.gpu_options.per_process_gpu_memory_fraction = 0.4
#config=tf.ConfigProto(log_device_placement=False,gpu_options=tf.GPUOptions(allow_growth=False),allow_soft_placement = True)
with tf.device(d):
with tf.Session(graph=graph, config=config) as sess:
results = sess.run(output_operation.outputs[0], {
input_operation.outputs[0]: t
})
results = np.squeeze(results)
tensorflow gpu inception
New contributor
$endgroup$
While using multiple (three) trained tensorflow models on python run parallelly as 3 threads (or just 2); I get memory outage but no issue on running each individually on each GPU seperately (2X3 = 6 times) or as per code config below.
GPU config -
GeForce GTX 1060 6GB major totalMemory: 5.93GiB freeMemory: 5.69GiB memoryClockRate(GHz): 1.7715
GeForce GTX 1050 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.392 =>ignored totalMemory: 3.94GiB freeMemory: 3.89GiB
Individual Model Files' relevant (GPU related) code-
1)d = '/gpu:0'
config=tf.ConfigProto()
#config.log_device_placement= True
print("SUNGLASSSSSSSSSSSSSSSSSSSS")
#config.gpu_options.per_process_gpu_memory_fraction = 0.3
config=tf.ConfigProto(gpu_options=tf.GPUOptions(visible_device_list='0'))
with tf.device(d):
with tf.Session(graph=graph, config=config) as sess:
results = sess.run(output_operation.outputs[0], {
input_operation.outputs[0]: t
})
results = np.squeeze(results)
2)
d = '/gpu:1'
config=tf.ConfigProto()
#config.log_device_placement= True
print("HATSSSSSSSSSSSSSSSSSS")
config.gpu_options.per_process_gpu_memory_fraction = 0.35
config=tf.ConfigProto(log_device_placement=False,gpu_options=tf.GPUOptions(allow_growth=True),allow_soft_placement = True)
with tf.Session(graph=graph, config=config) as sess:
results = sess.run(output_operation.outputs[0], {
input_operation.outputs[0]: t
})
results = np.squeeze(results)
3)
d = '/gpu:1'
config=tf.ConfigProto()
#config.log_device_placement= True
print("HANDSNEARFACEEEEEEEEEEEEE")
config.gpu_options.per_process_gpu_memory_fraction = 0.4
#config=tf.ConfigProto(log_device_placement=False,gpu_options=tf.GPUOptions(allow_growth=False),allow_soft_placement = True)
with tf.device(d):
with tf.Session(graph=graph, config=config) as sess:
results = sess.run(output_operation.outputs[0], {
input_operation.outputs[0]: t
})
results = np.squeeze(results)
tensorflow gpu inception
tensorflow gpu inception
New contributor
New contributor
New contributor
asked 9 mins ago
MikeMike
1
1
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Mike is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46285%2fgpu-issue-with-multiple-inception-v3-trained-models%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Mike is a new contributor. Be nice, and check out our Code of Conduct.
Mike is a new contributor. Be nice, and check out our Code of Conduct.
Mike is a new contributor. Be nice, and check out our Code of Conduct.
Mike is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46285%2fgpu-issue-with-multiple-inception-v3-trained-models%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown