GPU issue with multiple Inception V3 trained models












0












$begingroup$


While using multiple (three) trained tensorflow models on python run parallelly as 3 threads (or just 2); I get memory outage but no issue on running each individually on each GPU seperately (2X3 = 6 times) or as per code config below.



GPU config -



GeForce GTX 1060 6GB major totalMemory: 5.93GiB freeMemory: 5.69GiB memoryClockRate(GHz): 1.7715



GeForce GTX 1050 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.392 =>ignored totalMemory: 3.94GiB freeMemory: 3.89GiB



Individual Model Files' relevant (GPU related) code-



1)d = '/gpu:0'
config=tf.ConfigProto()
#config.log_device_placement= True
print("SUNGLASSSSSSSSSSSSSSSSSSSS")
#config.gpu_options.per_process_gpu_memory_fraction = 0.3
config=tf.ConfigProto(gpu_options=tf.GPUOptions(visible_device_list='0'))
with tf.device(d):
with tf.Session(graph=graph, config=config) as sess:
results = sess.run(output_operation.outputs[0], {
input_operation.outputs[0]: t
})
results = np.squeeze(results)



2)
d = '/gpu:1'
config=tf.ConfigProto()
#config.log_device_placement= True
print("HATSSSSSSSSSSSSSSSSSS")
config.gpu_options.per_process_gpu_memory_fraction = 0.35
config=tf.ConfigProto(log_device_placement=False,gpu_options=tf.GPUOptions(allow_growth=True),allow_soft_placement = True)
with tf.Session(graph=graph, config=config) as sess:
results = sess.run(output_operation.outputs[0], {
input_operation.outputs[0]: t
})
results = np.squeeze(results)



3)
d = '/gpu:1'
config=tf.ConfigProto()
#config.log_device_placement= True
print("HANDSNEARFACEEEEEEEEEEEEE")
config.gpu_options.per_process_gpu_memory_fraction = 0.4
#config=tf.ConfigProto(log_device_placement=False,gpu_options=tf.GPUOptions(allow_growth=False),allow_soft_placement = True)
with tf.device(d):
with tf.Session(graph=graph, config=config) as sess:
results = sess.run(output_operation.outputs[0], {
input_operation.outputs[0]: t
})
results = np.squeeze(results)









share







New contributor




Mike is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    0












    $begingroup$


    While using multiple (three) trained tensorflow models on python run parallelly as 3 threads (or just 2); I get memory outage but no issue on running each individually on each GPU seperately (2X3 = 6 times) or as per code config below.



    GPU config -



    GeForce GTX 1060 6GB major totalMemory: 5.93GiB freeMemory: 5.69GiB memoryClockRate(GHz): 1.7715



    GeForce GTX 1050 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.392 =>ignored totalMemory: 3.94GiB freeMemory: 3.89GiB



    Individual Model Files' relevant (GPU related) code-



    1)d = '/gpu:0'
    config=tf.ConfigProto()
    #config.log_device_placement= True
    print("SUNGLASSSSSSSSSSSSSSSSSSSS")
    #config.gpu_options.per_process_gpu_memory_fraction = 0.3
    config=tf.ConfigProto(gpu_options=tf.GPUOptions(visible_device_list='0'))
    with tf.device(d):
    with tf.Session(graph=graph, config=config) as sess:
    results = sess.run(output_operation.outputs[0], {
    input_operation.outputs[0]: t
    })
    results = np.squeeze(results)



    2)
    d = '/gpu:1'
    config=tf.ConfigProto()
    #config.log_device_placement= True
    print("HATSSSSSSSSSSSSSSSSSS")
    config.gpu_options.per_process_gpu_memory_fraction = 0.35
    config=tf.ConfigProto(log_device_placement=False,gpu_options=tf.GPUOptions(allow_growth=True),allow_soft_placement = True)
    with tf.Session(graph=graph, config=config) as sess:
    results = sess.run(output_operation.outputs[0], {
    input_operation.outputs[0]: t
    })
    results = np.squeeze(results)



    3)
    d = '/gpu:1'
    config=tf.ConfigProto()
    #config.log_device_placement= True
    print("HANDSNEARFACEEEEEEEEEEEEE")
    config.gpu_options.per_process_gpu_memory_fraction = 0.4
    #config=tf.ConfigProto(log_device_placement=False,gpu_options=tf.GPUOptions(allow_growth=False),allow_soft_placement = True)
    with tf.device(d):
    with tf.Session(graph=graph, config=config) as sess:
    results = sess.run(output_operation.outputs[0], {
    input_operation.outputs[0]: t
    })
    results = np.squeeze(results)









    share







    New contributor




    Mike is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      0












      0








      0





      $begingroup$


      While using multiple (three) trained tensorflow models on python run parallelly as 3 threads (or just 2); I get memory outage but no issue on running each individually on each GPU seperately (2X3 = 6 times) or as per code config below.



      GPU config -



      GeForce GTX 1060 6GB major totalMemory: 5.93GiB freeMemory: 5.69GiB memoryClockRate(GHz): 1.7715



      GeForce GTX 1050 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.392 =>ignored totalMemory: 3.94GiB freeMemory: 3.89GiB



      Individual Model Files' relevant (GPU related) code-



      1)d = '/gpu:0'
      config=tf.ConfigProto()
      #config.log_device_placement= True
      print("SUNGLASSSSSSSSSSSSSSSSSSSS")
      #config.gpu_options.per_process_gpu_memory_fraction = 0.3
      config=tf.ConfigProto(gpu_options=tf.GPUOptions(visible_device_list='0'))
      with tf.device(d):
      with tf.Session(graph=graph, config=config) as sess:
      results = sess.run(output_operation.outputs[0], {
      input_operation.outputs[0]: t
      })
      results = np.squeeze(results)



      2)
      d = '/gpu:1'
      config=tf.ConfigProto()
      #config.log_device_placement= True
      print("HATSSSSSSSSSSSSSSSSSS")
      config.gpu_options.per_process_gpu_memory_fraction = 0.35
      config=tf.ConfigProto(log_device_placement=False,gpu_options=tf.GPUOptions(allow_growth=True),allow_soft_placement = True)
      with tf.Session(graph=graph, config=config) as sess:
      results = sess.run(output_operation.outputs[0], {
      input_operation.outputs[0]: t
      })
      results = np.squeeze(results)



      3)
      d = '/gpu:1'
      config=tf.ConfigProto()
      #config.log_device_placement= True
      print("HANDSNEARFACEEEEEEEEEEEEE")
      config.gpu_options.per_process_gpu_memory_fraction = 0.4
      #config=tf.ConfigProto(log_device_placement=False,gpu_options=tf.GPUOptions(allow_growth=False),allow_soft_placement = True)
      with tf.device(d):
      with tf.Session(graph=graph, config=config) as sess:
      results = sess.run(output_operation.outputs[0], {
      input_operation.outputs[0]: t
      })
      results = np.squeeze(results)









      share







      New contributor




      Mike is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      While using multiple (three) trained tensorflow models on python run parallelly as 3 threads (or just 2); I get memory outage but no issue on running each individually on each GPU seperately (2X3 = 6 times) or as per code config below.



      GPU config -



      GeForce GTX 1060 6GB major totalMemory: 5.93GiB freeMemory: 5.69GiB memoryClockRate(GHz): 1.7715



      GeForce GTX 1050 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.392 =>ignored totalMemory: 3.94GiB freeMemory: 3.89GiB



      Individual Model Files' relevant (GPU related) code-



      1)d = '/gpu:0'
      config=tf.ConfigProto()
      #config.log_device_placement= True
      print("SUNGLASSSSSSSSSSSSSSSSSSSS")
      #config.gpu_options.per_process_gpu_memory_fraction = 0.3
      config=tf.ConfigProto(gpu_options=tf.GPUOptions(visible_device_list='0'))
      with tf.device(d):
      with tf.Session(graph=graph, config=config) as sess:
      results = sess.run(output_operation.outputs[0], {
      input_operation.outputs[0]: t
      })
      results = np.squeeze(results)



      2)
      d = '/gpu:1'
      config=tf.ConfigProto()
      #config.log_device_placement= True
      print("HATSSSSSSSSSSSSSSSSSS")
      config.gpu_options.per_process_gpu_memory_fraction = 0.35
      config=tf.ConfigProto(log_device_placement=False,gpu_options=tf.GPUOptions(allow_growth=True),allow_soft_placement = True)
      with tf.Session(graph=graph, config=config) as sess:
      results = sess.run(output_operation.outputs[0], {
      input_operation.outputs[0]: t
      })
      results = np.squeeze(results)



      3)
      d = '/gpu:1'
      config=tf.ConfigProto()
      #config.log_device_placement= True
      print("HANDSNEARFACEEEEEEEEEEEEE")
      config.gpu_options.per_process_gpu_memory_fraction = 0.4
      #config=tf.ConfigProto(log_device_placement=False,gpu_options=tf.GPUOptions(allow_growth=False),allow_soft_placement = True)
      with tf.device(d):
      with tf.Session(graph=graph, config=config) as sess:
      results = sess.run(output_operation.outputs[0], {
      input_operation.outputs[0]: t
      })
      results = np.squeeze(results)







      tensorflow gpu inception





      share







      New contributor




      Mike is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.










      share







      New contributor




      Mike is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      share



      share






      New contributor




      Mike is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 9 mins ago









      MikeMike

      1




      1




      New contributor




      Mike is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Mike is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Mike is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "557"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });






          Mike is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46285%2fgpu-issue-with-multiple-inception-v3-trained-models%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          Mike is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          Mike is a new contributor. Be nice, and check out our Code of Conduct.













          Mike is a new contributor. Be nice, and check out our Code of Conduct.












          Mike is a new contributor. Be nice, and check out our Code of Conduct.
















          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46285%2fgpu-issue-with-multiple-inception-v3-trained-models%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ponta tanko

          Tantalo (mitologio)

          Erzsébet Schaár