Validition score while training lower than on final model with xgboost
$begingroup$
I have 3 three classes, but my metric is auc, so I have customer eval metric:
# while training eval metric
def custom_eval_metric_class(preds, dtrain):
labels = dtrain.get_label()
labels_processed = [1 if u == 2 else 0 for u in labels]
pred_proba = preds[:, 2]
return 'auc', roc_auc_score(labels_processed, pred_proba)
#final metric function
def roc_auc_score_3class(y_test, y_score):
#print (y_test, 'n', y_score)
metric_auc = roc_auc_score( [1 if v == 2 else 0 for v in y_test],
y_score)
return metric_auc
My target class is 2.
While training model performance on validation reaches .80+ but then on final validation doesnt hit such value. What might be wrong here?
def train_model(X, y, params=None, folds=5, model_type='lgb'):
for fold_n, (train_index, valid_index) in enumerate(folds.split(X, y)):
gc.collect()
print('Fold', fold_n + 1, 'started at', time.ctime())
X_train, X_valid = X.iloc[train_index], X.iloc[valid_index]
y_train, y_valid = y.iloc[train_index], y.iloc[valid_index]
if model_type == 'xgb':
model = xgb.XGBClassifier(params=params, n_estimators = 5000)
model = model.fit(X_train, y_train, eval_set = [(X_valid, y_valid)], early_stopping_rounds=200,
eval_metric = custom_eval_metric_class, verbose = 100)
y_pred_valid = model.predict_proba(X_valid, model.best_ntree_limit)[:, 2]
scores.append(roc_auc_score_3class(y_valid, y_pred_valid))
print('Fold valid roc_auc:', roc_auc_score_3class(y_valid, y_pred_valid))
Will train until validation_0-auc hasn't improved in 200 rounds.
[100] validation_0-merror:0.211905 validation_0-auc:0.790956
[200] validation_0-merror:0.214286 validation_0-auc:0.794158
[300] validation_0-merror:0.210714 validation_0-auc:0.792962
Stopping. Best iteration:
[196] validation_0-merror:0.214286 validation_0-auc:0.796363
Fold valid roc_auc: 0.731813592646
xgboost cross-validation
$endgroup$
add a comment |
$begingroup$
I have 3 three classes, but my metric is auc, so I have customer eval metric:
# while training eval metric
def custom_eval_metric_class(preds, dtrain):
labels = dtrain.get_label()
labels_processed = [1 if u == 2 else 0 for u in labels]
pred_proba = preds[:, 2]
return 'auc', roc_auc_score(labels_processed, pred_proba)
#final metric function
def roc_auc_score_3class(y_test, y_score):
#print (y_test, 'n', y_score)
metric_auc = roc_auc_score( [1 if v == 2 else 0 for v in y_test],
y_score)
return metric_auc
My target class is 2.
While training model performance on validation reaches .80+ but then on final validation doesnt hit such value. What might be wrong here?
def train_model(X, y, params=None, folds=5, model_type='lgb'):
for fold_n, (train_index, valid_index) in enumerate(folds.split(X, y)):
gc.collect()
print('Fold', fold_n + 1, 'started at', time.ctime())
X_train, X_valid = X.iloc[train_index], X.iloc[valid_index]
y_train, y_valid = y.iloc[train_index], y.iloc[valid_index]
if model_type == 'xgb':
model = xgb.XGBClassifier(params=params, n_estimators = 5000)
model = model.fit(X_train, y_train, eval_set = [(X_valid, y_valid)], early_stopping_rounds=200,
eval_metric = custom_eval_metric_class, verbose = 100)
y_pred_valid = model.predict_proba(X_valid, model.best_ntree_limit)[:, 2]
scores.append(roc_auc_score_3class(y_valid, y_pred_valid))
print('Fold valid roc_auc:', roc_auc_score_3class(y_valid, y_pred_valid))
Will train until validation_0-auc hasn't improved in 200 rounds.
[100] validation_0-merror:0.211905 validation_0-auc:0.790956
[200] validation_0-merror:0.214286 validation_0-auc:0.794158
[300] validation_0-merror:0.210714 validation_0-auc:0.792962
Stopping. Best iteration:
[196] validation_0-merror:0.214286 validation_0-auc:0.796363
Fold valid roc_auc: 0.731813592646
xgboost cross-validation
$endgroup$
add a comment |
$begingroup$
I have 3 three classes, but my metric is auc, so I have customer eval metric:
# while training eval metric
def custom_eval_metric_class(preds, dtrain):
labels = dtrain.get_label()
labels_processed = [1 if u == 2 else 0 for u in labels]
pred_proba = preds[:, 2]
return 'auc', roc_auc_score(labels_processed, pred_proba)
#final metric function
def roc_auc_score_3class(y_test, y_score):
#print (y_test, 'n', y_score)
metric_auc = roc_auc_score( [1 if v == 2 else 0 for v in y_test],
y_score)
return metric_auc
My target class is 2.
While training model performance on validation reaches .80+ but then on final validation doesnt hit such value. What might be wrong here?
def train_model(X, y, params=None, folds=5, model_type='lgb'):
for fold_n, (train_index, valid_index) in enumerate(folds.split(X, y)):
gc.collect()
print('Fold', fold_n + 1, 'started at', time.ctime())
X_train, X_valid = X.iloc[train_index], X.iloc[valid_index]
y_train, y_valid = y.iloc[train_index], y.iloc[valid_index]
if model_type == 'xgb':
model = xgb.XGBClassifier(params=params, n_estimators = 5000)
model = model.fit(X_train, y_train, eval_set = [(X_valid, y_valid)], early_stopping_rounds=200,
eval_metric = custom_eval_metric_class, verbose = 100)
y_pred_valid = model.predict_proba(X_valid, model.best_ntree_limit)[:, 2]
scores.append(roc_auc_score_3class(y_valid, y_pred_valid))
print('Fold valid roc_auc:', roc_auc_score_3class(y_valid, y_pred_valid))
Will train until validation_0-auc hasn't improved in 200 rounds.
[100] validation_0-merror:0.211905 validation_0-auc:0.790956
[200] validation_0-merror:0.214286 validation_0-auc:0.794158
[300] validation_0-merror:0.210714 validation_0-auc:0.792962
Stopping. Best iteration:
[196] validation_0-merror:0.214286 validation_0-auc:0.796363
Fold valid roc_auc: 0.731813592646
xgboost cross-validation
$endgroup$
I have 3 three classes, but my metric is auc, so I have customer eval metric:
# while training eval metric
def custom_eval_metric_class(preds, dtrain):
labels = dtrain.get_label()
labels_processed = [1 if u == 2 else 0 for u in labels]
pred_proba = preds[:, 2]
return 'auc', roc_auc_score(labels_processed, pred_proba)
#final metric function
def roc_auc_score_3class(y_test, y_score):
#print (y_test, 'n', y_score)
metric_auc = roc_auc_score( [1 if v == 2 else 0 for v in y_test],
y_score)
return metric_auc
My target class is 2.
While training model performance on validation reaches .80+ but then on final validation doesnt hit such value. What might be wrong here?
def train_model(X, y, params=None, folds=5, model_type='lgb'):
for fold_n, (train_index, valid_index) in enumerate(folds.split(X, y)):
gc.collect()
print('Fold', fold_n + 1, 'started at', time.ctime())
X_train, X_valid = X.iloc[train_index], X.iloc[valid_index]
y_train, y_valid = y.iloc[train_index], y.iloc[valid_index]
if model_type == 'xgb':
model = xgb.XGBClassifier(params=params, n_estimators = 5000)
model = model.fit(X_train, y_train, eval_set = [(X_valid, y_valid)], early_stopping_rounds=200,
eval_metric = custom_eval_metric_class, verbose = 100)
y_pred_valid = model.predict_proba(X_valid, model.best_ntree_limit)[:, 2]
scores.append(roc_auc_score_3class(y_valid, y_pred_valid))
print('Fold valid roc_auc:', roc_auc_score_3class(y_valid, y_pred_valid))
Will train until validation_0-auc hasn't improved in 200 rounds.
[100] validation_0-merror:0.211905 validation_0-auc:0.790956
[200] validation_0-merror:0.214286 validation_0-auc:0.794158
[300] validation_0-merror:0.210714 validation_0-auc:0.792962
Stopping. Best iteration:
[196] validation_0-merror:0.214286 validation_0-auc:0.796363
Fold valid roc_auc: 0.731813592646
xgboost cross-validation
xgboost cross-validation
asked 4 mins ago
RocketqRocketq
1235
1235
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45794%2fvalidition-score-while-training-lower-than-on-final-model-with-xgboost%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45794%2fvalidition-score-while-training-lower-than-on-final-model-with-xgboost%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown