If u is orthogonal to both v and w, and u not equal to 0, argue that u is not in the span of v and w. (












1












$begingroup$


QN: If u is orthogonal to both v and w, and u ≠ 0, argue that u is not in the span of v and w.



Where I am at:
enter image description here



I get stuck when it comes to solving my augmented matrix with Gauss Jordan Elimination.



I also tried formulating the following steps to solve the problem.




  1. Create instances of u, v and w that pertain to the question. My visualisation in Geogebra can be viewed here: https://ggbm.at/b6xvwhpa


  2. Set u = av + bw = u (where a and b are constants)


  3. Disprove (2)


However, I could not get past step 1.



Any pointers would be greatly appreciated.










share|cite|improve this question









New contributor




Dimen3ional is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    1












    $begingroup$


    QN: If u is orthogonal to both v and w, and u ≠ 0, argue that u is not in the span of v and w.



    Where I am at:
    enter image description here



    I get stuck when it comes to solving my augmented matrix with Gauss Jordan Elimination.



    I also tried formulating the following steps to solve the problem.




    1. Create instances of u, v and w that pertain to the question. My visualisation in Geogebra can be viewed here: https://ggbm.at/b6xvwhpa


    2. Set u = av + bw = u (where a and b are constants)


    3. Disprove (2)


    However, I could not get past step 1.



    Any pointers would be greatly appreciated.










    share|cite|improve this question









    New contributor




    Dimen3ional is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      1












      1








      1





      $begingroup$


      QN: If u is orthogonal to both v and w, and u ≠ 0, argue that u is not in the span of v and w.



      Where I am at:
      enter image description here



      I get stuck when it comes to solving my augmented matrix with Gauss Jordan Elimination.



      I also tried formulating the following steps to solve the problem.




      1. Create instances of u, v and w that pertain to the question. My visualisation in Geogebra can be viewed here: https://ggbm.at/b6xvwhpa


      2. Set u = av + bw = u (where a and b are constants)


      3. Disprove (2)


      However, I could not get past step 1.



      Any pointers would be greatly appreciated.










      share|cite|improve this question









      New contributor




      Dimen3ional is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      QN: If u is orthogonal to both v and w, and u ≠ 0, argue that u is not in the span of v and w.



      Where I am at:
      enter image description here



      I get stuck when it comes to solving my augmented matrix with Gauss Jordan Elimination.



      I also tried formulating the following steps to solve the problem.




      1. Create instances of u, v and w that pertain to the question. My visualisation in Geogebra can be viewed here: https://ggbm.at/b6xvwhpa


      2. Set u = av + bw = u (where a and b are constants)


      3. Disprove (2)


      However, I could not get past step 1.



      Any pointers would be greatly appreciated.







      linear-algebra matrices






      share|cite|improve this question









      New contributor




      Dimen3ional is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      Dimen3ional is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 19 mins ago









      YuiTo Cheng

      2,52341037




      2,52341037






      New contributor




      Dimen3ional is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 31 mins ago









      Dimen3ionalDimen3ional

      82




      82




      New contributor




      Dimen3ional is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Dimen3ional is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Dimen3ional is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          $defmyvec#1{{bf#1}}$
          This is the same as saying




          if $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, and $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=myvec 0$.




          So, if $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=amyvec v+bmyvec w$ for some scalars $a,b$. Assuming also $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, this means $myvec ucdot myvec v=0$ and $myvec ucdotmyvec w=0$, so
          $$myvec ucdot myvec u=myvec ucdot(amyvec v+bmyvec w)=a(myvec ucdot myvec v)+b(myvec ucdot myvec w)=a0+b0=0 .$$
          Since $myvec ucdot myvec u=0$ we have $myvec u=myvec 0$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I thought about this, however, the question specifically states that u can not be zero. If u can't be zero does that not prevent the above proof, or am I looking at this the wrong way?
            $endgroup$
            – Dimen3ional
            16 mins ago










          • $begingroup$
            Have you studied proof by contradiction or by contrapositive? That's what this is.
            $endgroup$
            – David
            15 mins ago





















          2












          $begingroup$

          If $u$ belongs to the span of $v$ and $w$ the $u=av+bw$ for some scalars $a$ and $b$. Since $langle u, v rangle=0$ and $langle u, w rangle=0$ we get $langle u, (av+bw) rangle=0$ so $langle u, u rangle=0$. This means $u=0$ which is a contradiction.






          share|cite|improve this answer









          $endgroup$














            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });






            Dimen3ional is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3192025%2fif-u-is-orthogonal-to-both-v-and-w-and-u-not-equal-to-0-argue-that-u-is-not-in%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            $defmyvec#1{{bf#1}}$
            This is the same as saying




            if $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, and $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=myvec 0$.




            So, if $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=amyvec v+bmyvec w$ for some scalars $a,b$. Assuming also $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, this means $myvec ucdot myvec v=0$ and $myvec ucdotmyvec w=0$, so
            $$myvec ucdot myvec u=myvec ucdot(amyvec v+bmyvec w)=a(myvec ucdot myvec v)+b(myvec ucdot myvec w)=a0+b0=0 .$$
            Since $myvec ucdot myvec u=0$ we have $myvec u=myvec 0$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              I thought about this, however, the question specifically states that u can not be zero. If u can't be zero does that not prevent the above proof, or am I looking at this the wrong way?
              $endgroup$
              – Dimen3ional
              16 mins ago










            • $begingroup$
              Have you studied proof by contradiction or by contrapositive? That's what this is.
              $endgroup$
              – David
              15 mins ago


















            2












            $begingroup$

            $defmyvec#1{{bf#1}}$
            This is the same as saying




            if $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, and $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=myvec 0$.




            So, if $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=amyvec v+bmyvec w$ for some scalars $a,b$. Assuming also $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, this means $myvec ucdot myvec v=0$ and $myvec ucdotmyvec w=0$, so
            $$myvec ucdot myvec u=myvec ucdot(amyvec v+bmyvec w)=a(myvec ucdot myvec v)+b(myvec ucdot myvec w)=a0+b0=0 .$$
            Since $myvec ucdot myvec u=0$ we have $myvec u=myvec 0$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              I thought about this, however, the question specifically states that u can not be zero. If u can't be zero does that not prevent the above proof, or am I looking at this the wrong way?
              $endgroup$
              – Dimen3ional
              16 mins ago










            • $begingroup$
              Have you studied proof by contradiction or by contrapositive? That's what this is.
              $endgroup$
              – David
              15 mins ago
















            2












            2








            2





            $begingroup$

            $defmyvec#1{{bf#1}}$
            This is the same as saying




            if $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, and $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=myvec 0$.




            So, if $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=amyvec v+bmyvec w$ for some scalars $a,b$. Assuming also $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, this means $myvec ucdot myvec v=0$ and $myvec ucdotmyvec w=0$, so
            $$myvec ucdot myvec u=myvec ucdot(amyvec v+bmyvec w)=a(myvec ucdot myvec v)+b(myvec ucdot myvec w)=a0+b0=0 .$$
            Since $myvec ucdot myvec u=0$ we have $myvec u=myvec 0$.






            share|cite|improve this answer









            $endgroup$



            $defmyvec#1{{bf#1}}$
            This is the same as saying




            if $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, and $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=myvec 0$.




            So, if $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=amyvec v+bmyvec w$ for some scalars $a,b$. Assuming also $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, this means $myvec ucdot myvec v=0$ and $myvec ucdotmyvec w=0$, so
            $$myvec ucdot myvec u=myvec ucdot(amyvec v+bmyvec w)=a(myvec ucdot myvec v)+b(myvec ucdot myvec w)=a0+b0=0 .$$
            Since $myvec ucdot myvec u=0$ we have $myvec u=myvec 0$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 23 mins ago









            DavidDavid

            70.1k668131




            70.1k668131












            • $begingroup$
              I thought about this, however, the question specifically states that u can not be zero. If u can't be zero does that not prevent the above proof, or am I looking at this the wrong way?
              $endgroup$
              – Dimen3ional
              16 mins ago










            • $begingroup$
              Have you studied proof by contradiction or by contrapositive? That's what this is.
              $endgroup$
              – David
              15 mins ago




















            • $begingroup$
              I thought about this, however, the question specifically states that u can not be zero. If u can't be zero does that not prevent the above proof, or am I looking at this the wrong way?
              $endgroup$
              – Dimen3ional
              16 mins ago










            • $begingroup$
              Have you studied proof by contradiction or by contrapositive? That's what this is.
              $endgroup$
              – David
              15 mins ago


















            $begingroup$
            I thought about this, however, the question specifically states that u can not be zero. If u can't be zero does that not prevent the above proof, or am I looking at this the wrong way?
            $endgroup$
            – Dimen3ional
            16 mins ago




            $begingroup$
            I thought about this, however, the question specifically states that u can not be zero. If u can't be zero does that not prevent the above proof, or am I looking at this the wrong way?
            $endgroup$
            – Dimen3ional
            16 mins ago












            $begingroup$
            Have you studied proof by contradiction or by contrapositive? That's what this is.
            $endgroup$
            – David
            15 mins ago






            $begingroup$
            Have you studied proof by contradiction or by contrapositive? That's what this is.
            $endgroup$
            – David
            15 mins ago













            2












            $begingroup$

            If $u$ belongs to the span of $v$ and $w$ the $u=av+bw$ for some scalars $a$ and $b$. Since $langle u, v rangle=0$ and $langle u, w rangle=0$ we get $langle u, (av+bw) rangle=0$ so $langle u, u rangle=0$. This means $u=0$ which is a contradiction.






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              If $u$ belongs to the span of $v$ and $w$ the $u=av+bw$ for some scalars $a$ and $b$. Since $langle u, v rangle=0$ and $langle u, w rangle=0$ we get $langle u, (av+bw) rangle=0$ so $langle u, u rangle=0$. This means $u=0$ which is a contradiction.






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                If $u$ belongs to the span of $v$ and $w$ the $u=av+bw$ for some scalars $a$ and $b$. Since $langle u, v rangle=0$ and $langle u, w rangle=0$ we get $langle u, (av+bw) rangle=0$ so $langle u, u rangle=0$. This means $u=0$ which is a contradiction.






                share|cite|improve this answer









                $endgroup$



                If $u$ belongs to the span of $v$ and $w$ the $u=av+bw$ for some scalars $a$ and $b$. Since $langle u, v rangle=0$ and $langle u, w rangle=0$ we get $langle u, (av+bw) rangle=0$ so $langle u, u rangle=0$. This means $u=0$ which is a contradiction.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 22 mins ago









                Kavi Rama MurthyKavi Rama Murthy

                75.6k53270




                75.6k53270






















                    Dimen3ional is a new contributor. Be nice, and check out our Code of Conduct.










                    draft saved

                    draft discarded


















                    Dimen3ional is a new contributor. Be nice, and check out our Code of Conduct.













                    Dimen3ional is a new contributor. Be nice, and check out our Code of Conduct.












                    Dimen3ional is a new contributor. Be nice, and check out our Code of Conduct.
















                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3192025%2fif-u-is-orthogonal-to-both-v-and-w-and-u-not-equal-to-0-argue-that-u-is-not-in%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ponta tanko

                    Tantalo (mitologio)

                    Erzsébet Schaár