what is the log of the PDF for a Normal Distribution?





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}







1












$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}
,-infty <x<infty
$$



taking log produces:



begin{align}
ln(frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}) &=
ln(frac {1}{sigma sqrt {2pi}})+ln(e^{-frac {(x - mu)^2}{2sigma ^2}})\
&=-ln(sigma)-frac{1}{2} ln(2pi) - frac {(x - mu)^2}{2sigma ^2}
end{align}



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago












  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago


















1












$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}
,-infty <x<infty
$$



taking log produces:



begin{align}
ln(frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}) &=
ln(frac {1}{sigma sqrt {2pi}})+ln(e^{-frac {(x - mu)^2}{2sigma ^2}})\
&=-ln(sigma)-frac{1}{2} ln(2pi) - frac {(x - mu)^2}{2sigma ^2}
end{align}



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago












  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago














1












1








1





$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}
,-infty <x<infty
$$



taking log produces:



begin{align}
ln(frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}) &=
ln(frac {1}{sigma sqrt {2pi}})+ln(e^{-frac {(x - mu)^2}{2sigma ^2}})\
&=-ln(sigma)-frac{1}{2} ln(2pi) - frac {(x - mu)^2}{2sigma ^2}
end{align}



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$




I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}
,-infty <x<infty
$$



taking log produces:



begin{align}
ln(frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}) &=
ln(frac {1}{sigma sqrt {2pi}})+ln(e^{-frac {(x - mu)^2}{2sigma ^2}})\
&=-ln(sigma)-frac{1}{2} ln(2pi) - frac {(x - mu)^2}{2sigma ^2}
end{align}



which is very different from equation1.



is equation1 right? what am I missing?







probability log






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 1 hour ago









shi95shi95

83




83








  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago












  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago














  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago












  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago








3




3




$begingroup$
Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
$endgroup$
– Artem Mavrin
1 hour ago






$begingroup$
Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
$endgroup$
– Artem Mavrin
1 hour ago














$begingroup$
@ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
$endgroup$
– StatsStudent
1 hour ago




$begingroup$
@ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
$endgroup$
– StatsStudent
1 hour ago










1 Answer
1






active

oldest

votes


















2












$begingroup$

For a single observed value $x$ you have log-likelihood:



$$ell_x(mu,sigma^2) = - ln sigma - frac{1}{2} ln (2 pi) - frac{1}{2} Big( frac{x-mu}{sigma} Big)^2.$$



For a sample of observed values $mathbf{x} = (x_1,...,x_n)$ you then have:



$$ell_mathbf{x}(mu,sigma^2) = sum_{i=1}^n ell_x(mu,sigma^2) = - n ln sigma - frac{n}{2} ln (2 pi) - frac{1}{2 sigma^2} sum_{i=1}^n (x_i-mu)^2.$$






share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "65"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404191%2fwhat-is-the-log-of-the-pdf-for-a-normal-distribution%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    For a single observed value $x$ you have log-likelihood:



    $$ell_x(mu,sigma^2) = - ln sigma - frac{1}{2} ln (2 pi) - frac{1}{2} Big( frac{x-mu}{sigma} Big)^2.$$



    For a sample of observed values $mathbf{x} = (x_1,...,x_n)$ you then have:



    $$ell_mathbf{x}(mu,sigma^2) = sum_{i=1}^n ell_x(mu,sigma^2) = - n ln sigma - frac{n}{2} ln (2 pi) - frac{1}{2 sigma^2} sum_{i=1}^n (x_i-mu)^2.$$






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      For a single observed value $x$ you have log-likelihood:



      $$ell_x(mu,sigma^2) = - ln sigma - frac{1}{2} ln (2 pi) - frac{1}{2} Big( frac{x-mu}{sigma} Big)^2.$$



      For a sample of observed values $mathbf{x} = (x_1,...,x_n)$ you then have:



      $$ell_mathbf{x}(mu,sigma^2) = sum_{i=1}^n ell_x(mu,sigma^2) = - n ln sigma - frac{n}{2} ln (2 pi) - frac{1}{2 sigma^2} sum_{i=1}^n (x_i-mu)^2.$$






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        For a single observed value $x$ you have log-likelihood:



        $$ell_x(mu,sigma^2) = - ln sigma - frac{1}{2} ln (2 pi) - frac{1}{2} Big( frac{x-mu}{sigma} Big)^2.$$



        For a sample of observed values $mathbf{x} = (x_1,...,x_n)$ you then have:



        $$ell_mathbf{x}(mu,sigma^2) = sum_{i=1}^n ell_x(mu,sigma^2) = - n ln sigma - frac{n}{2} ln (2 pi) - frac{1}{2 sigma^2} sum_{i=1}^n (x_i-mu)^2.$$






        share|cite|improve this answer









        $endgroup$



        For a single observed value $x$ you have log-likelihood:



        $$ell_x(mu,sigma^2) = - ln sigma - frac{1}{2} ln (2 pi) - frac{1}{2} Big( frac{x-mu}{sigma} Big)^2.$$



        For a sample of observed values $mathbf{x} = (x_1,...,x_n)$ you then have:



        $$ell_mathbf{x}(mu,sigma^2) = sum_{i=1}^n ell_x(mu,sigma^2) = - n ln sigma - frac{n}{2} ln (2 pi) - frac{1}{2 sigma^2} sum_{i=1}^n (x_i-mu)^2.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        BenBen

        28.9k233129




        28.9k233129






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Cross Validated!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404191%2fwhat-is-the-log-of-the-pdf-for-a-normal-distribution%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ponta tanko

            Tantalo (mitologio)

            Erzsébet Schaár