Minimizing with differential evolution
$begingroup$
A differential evolution algorithm is given here. I would like to get this kind of animation. I thought I could use NMinimize
, given
DifferentialEvolution
as an option, but it turns out that does not work as I espected.
Is it possible to extract intermediate step in DifferentialEvolution
, or do I have to implement algorithm myself?
f[x_, y_] :=
-20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - E^(0.5 (Cos[2 π x] + Cos[2 π y])) + E + 20
p1 =
Plot3D[f[x, y], {x, -5, 5}, {y, -5, 5},
PerformanceGoal -> "Quality",
ColorFunction -> "WatermelonColors",
Mesh -> None,
BoxRatios -> {1, 1, 1}];
p2 =
DensityPlot[f[x, y], {x, -5, 5}, {y, -5, 5},
ColorFunction -> "WatermelonColors",
PlotPoints -> 200,
PerformanceGoal -> "Quality",
Frame -> False,
PlotRangePadding -> None];
p3 = Plot3D[0, {x, -5, 5}, {y, -5, 5}, PlotStyle -> Texture[p2], Mesh -> None];
Show[p1, p3, PlotRange -> {0, 15}]
When I use StepMonitor
to track iterations as follows, it does not work.
{fit, intermediates} =
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 1000,
Method -> {"DifferentialEvolution", "InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :> Sow[{x, y}]]];
Table[
ListPlot[Take[intermediates[[1, i ;; i + 10]]],
Frame -> True, ImageSize -> 350, AspectRatio -> 1],
{i, 10, 1000, 100}]
EDIT
Here is the result when we used @Michael E2 solution. Cool!!
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20
p1 = Plot3D[f[x, y], {x, -5, 5}, {y, -5, 5},
PerformanceGoal -> "Quality", ColorFunction -> "WatermelonColors",
Mesh -> None, BoxRatios -> {1, 1, 1}];
p2 = DensityPlot[f[x, y], {x, -5, 5}, {y, -5, 5},
ColorFunction -> "WatermelonColors", PerformanceGoal -> "Quality",
Frame -> False, PlotRangePadding -> None];
p3 = Plot3D[-0.5, {x, -5, 5}, {y, -5, 5}, PlotStyle -> Texture[p2],
Mesh -> None];
p4 = Show[p1, p3, PlotRange -> {-0.5, 15}]
Block[{f},
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
{fit, intermediates} =
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 30,
Method -> {"DifferentialEvolution",
"InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :>
Sow[{Optimization`NMinimizeDump`vecs,
Optimization`NMinimizeDump`vals}]]];] // Quiet
Multicolumn[
Table[Show[p4,
ListPointPlot3D[{Append[#, 0] & /@ intermediates[[1, i, 1]]},
PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Boxed -> False,
PlotStyle -> Directive[AbsolutePointSize[3], Black]]], {i, 1, 30,
2}], 5, Appearance -> "Horizontal"]
mathematical-optimization
$endgroup$
add a comment |
$begingroup$
A differential evolution algorithm is given here. I would like to get this kind of animation. I thought I could use NMinimize
, given
DifferentialEvolution
as an option, but it turns out that does not work as I espected.
Is it possible to extract intermediate step in DifferentialEvolution
, or do I have to implement algorithm myself?
f[x_, y_] :=
-20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - E^(0.5 (Cos[2 π x] + Cos[2 π y])) + E + 20
p1 =
Plot3D[f[x, y], {x, -5, 5}, {y, -5, 5},
PerformanceGoal -> "Quality",
ColorFunction -> "WatermelonColors",
Mesh -> None,
BoxRatios -> {1, 1, 1}];
p2 =
DensityPlot[f[x, y], {x, -5, 5}, {y, -5, 5},
ColorFunction -> "WatermelonColors",
PlotPoints -> 200,
PerformanceGoal -> "Quality",
Frame -> False,
PlotRangePadding -> None];
p3 = Plot3D[0, {x, -5, 5}, {y, -5, 5}, PlotStyle -> Texture[p2], Mesh -> None];
Show[p1, p3, PlotRange -> {0, 15}]
When I use StepMonitor
to track iterations as follows, it does not work.
{fit, intermediates} =
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 1000,
Method -> {"DifferentialEvolution", "InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :> Sow[{x, y}]]];
Table[
ListPlot[Take[intermediates[[1, i ;; i + 10]]],
Frame -> True, ImageSize -> 350, AspectRatio -> 1],
{i, 10, 1000, 100}]
EDIT
Here is the result when we used @Michael E2 solution. Cool!!
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20
p1 = Plot3D[f[x, y], {x, -5, 5}, {y, -5, 5},
PerformanceGoal -> "Quality", ColorFunction -> "WatermelonColors",
Mesh -> None, BoxRatios -> {1, 1, 1}];
p2 = DensityPlot[f[x, y], {x, -5, 5}, {y, -5, 5},
ColorFunction -> "WatermelonColors", PerformanceGoal -> "Quality",
Frame -> False, PlotRangePadding -> None];
p3 = Plot3D[-0.5, {x, -5, 5}, {y, -5, 5}, PlotStyle -> Texture[p2],
Mesh -> None];
p4 = Show[p1, p3, PlotRange -> {-0.5, 15}]
Block[{f},
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
{fit, intermediates} =
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 30,
Method -> {"DifferentialEvolution",
"InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :>
Sow[{Optimization`NMinimizeDump`vecs,
Optimization`NMinimizeDump`vals}]]];] // Quiet
Multicolumn[
Table[Show[p4,
ListPointPlot3D[{Append[#, 0] & /@ intermediates[[1, i, 1]]},
PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Boxed -> False,
PlotStyle -> Directive[AbsolutePointSize[3], Black]]], {i, 1, 30,
2}], 5, Appearance -> "Horizontal"]
mathematical-optimization
$endgroup$
$begingroup$
Note that blockingf
(Block[{f}, ...]
) isn't necessary. It was just to preventf
from being defined, which is a habit I have with single-lettter symbols on SE, esp. ones I use likef
,x
, etc. -- thanks for the accept!
$endgroup$
– Michael E2
1 hour ago
add a comment |
$begingroup$
A differential evolution algorithm is given here. I would like to get this kind of animation. I thought I could use NMinimize
, given
DifferentialEvolution
as an option, but it turns out that does not work as I espected.
Is it possible to extract intermediate step in DifferentialEvolution
, or do I have to implement algorithm myself?
f[x_, y_] :=
-20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - E^(0.5 (Cos[2 π x] + Cos[2 π y])) + E + 20
p1 =
Plot3D[f[x, y], {x, -5, 5}, {y, -5, 5},
PerformanceGoal -> "Quality",
ColorFunction -> "WatermelonColors",
Mesh -> None,
BoxRatios -> {1, 1, 1}];
p2 =
DensityPlot[f[x, y], {x, -5, 5}, {y, -5, 5},
ColorFunction -> "WatermelonColors",
PlotPoints -> 200,
PerformanceGoal -> "Quality",
Frame -> False,
PlotRangePadding -> None];
p3 = Plot3D[0, {x, -5, 5}, {y, -5, 5}, PlotStyle -> Texture[p2], Mesh -> None];
Show[p1, p3, PlotRange -> {0, 15}]
When I use StepMonitor
to track iterations as follows, it does not work.
{fit, intermediates} =
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 1000,
Method -> {"DifferentialEvolution", "InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :> Sow[{x, y}]]];
Table[
ListPlot[Take[intermediates[[1, i ;; i + 10]]],
Frame -> True, ImageSize -> 350, AspectRatio -> 1],
{i, 10, 1000, 100}]
EDIT
Here is the result when we used @Michael E2 solution. Cool!!
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20
p1 = Plot3D[f[x, y], {x, -5, 5}, {y, -5, 5},
PerformanceGoal -> "Quality", ColorFunction -> "WatermelonColors",
Mesh -> None, BoxRatios -> {1, 1, 1}];
p2 = DensityPlot[f[x, y], {x, -5, 5}, {y, -5, 5},
ColorFunction -> "WatermelonColors", PerformanceGoal -> "Quality",
Frame -> False, PlotRangePadding -> None];
p3 = Plot3D[-0.5, {x, -5, 5}, {y, -5, 5}, PlotStyle -> Texture[p2],
Mesh -> None];
p4 = Show[p1, p3, PlotRange -> {-0.5, 15}]
Block[{f},
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
{fit, intermediates} =
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 30,
Method -> {"DifferentialEvolution",
"InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :>
Sow[{Optimization`NMinimizeDump`vecs,
Optimization`NMinimizeDump`vals}]]];] // Quiet
Multicolumn[
Table[Show[p4,
ListPointPlot3D[{Append[#, 0] & /@ intermediates[[1, i, 1]]},
PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Boxed -> False,
PlotStyle -> Directive[AbsolutePointSize[3], Black]]], {i, 1, 30,
2}], 5, Appearance -> "Horizontal"]
mathematical-optimization
$endgroup$
A differential evolution algorithm is given here. I would like to get this kind of animation. I thought I could use NMinimize
, given
DifferentialEvolution
as an option, but it turns out that does not work as I espected.
Is it possible to extract intermediate step in DifferentialEvolution
, or do I have to implement algorithm myself?
f[x_, y_] :=
-20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) - E^(0.5 (Cos[2 π x] + Cos[2 π y])) + E + 20
p1 =
Plot3D[f[x, y], {x, -5, 5}, {y, -5, 5},
PerformanceGoal -> "Quality",
ColorFunction -> "WatermelonColors",
Mesh -> None,
BoxRatios -> {1, 1, 1}];
p2 =
DensityPlot[f[x, y], {x, -5, 5}, {y, -5, 5},
ColorFunction -> "WatermelonColors",
PlotPoints -> 200,
PerformanceGoal -> "Quality",
Frame -> False,
PlotRangePadding -> None];
p3 = Plot3D[0, {x, -5, 5}, {y, -5, 5}, PlotStyle -> Texture[p2], Mesh -> None];
Show[p1, p3, PlotRange -> {0, 15}]
When I use StepMonitor
to track iterations as follows, it does not work.
{fit, intermediates} =
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 1000,
Method -> {"DifferentialEvolution", "InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :> Sow[{x, y}]]];
Table[
ListPlot[Take[intermediates[[1, i ;; i + 10]]],
Frame -> True, ImageSize -> 350, AspectRatio -> 1],
{i, 10, 1000, 100}]
EDIT
Here is the result when we used @Michael E2 solution. Cool!!
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20
p1 = Plot3D[f[x, y], {x, -5, 5}, {y, -5, 5},
PerformanceGoal -> "Quality", ColorFunction -> "WatermelonColors",
Mesh -> None, BoxRatios -> {1, 1, 1}];
p2 = DensityPlot[f[x, y], {x, -5, 5}, {y, -5, 5},
ColorFunction -> "WatermelonColors", PerformanceGoal -> "Quality",
Frame -> False, PlotRangePadding -> None];
p3 = Plot3D[-0.5, {x, -5, 5}, {y, -5, 5}, PlotStyle -> Texture[p2],
Mesh -> None];
p4 = Show[p1, p3, PlotRange -> {-0.5, 15}]
Block[{f},
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
{fit, intermediates} =
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 30,
Method -> {"DifferentialEvolution",
"InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :>
Sow[{Optimization`NMinimizeDump`vecs,
Optimization`NMinimizeDump`vals}]]];] // Quiet
Multicolumn[
Table[Show[p4,
ListPointPlot3D[{Append[#, 0] & /@ intermediates[[1, i, 1]]},
PlotRange -> {{-5, 5}, {-5, 5}, {-5, 5}}, Boxed -> False,
PlotStyle -> Directive[AbsolutePointSize[3], Black]]], {i, 1, 30,
2}], 5, Appearance -> "Horizontal"]
mathematical-optimization
mathematical-optimization
edited 1 hour ago
Okkes Dulgerci
asked 3 hours ago
Okkes DulgerciOkkes Dulgerci
5,2691917
5,2691917
$begingroup$
Note that blockingf
(Block[{f}, ...]
) isn't necessary. It was just to preventf
from being defined, which is a habit I have with single-lettter symbols on SE, esp. ones I use likef
,x
, etc. -- thanks for the accept!
$endgroup$
– Michael E2
1 hour ago
add a comment |
$begingroup$
Note that blockingf
(Block[{f}, ...]
) isn't necessary. It was just to preventf
from being defined, which is a habit I have with single-lettter symbols on SE, esp. ones I use likef
,x
, etc. -- thanks for the accept!
$endgroup$
– Michael E2
1 hour ago
$begingroup$
Note that blocking
f
(Block[{f}, ...]
) isn't necessary. It was just to prevent f
from being defined, which is a habit I have with single-lettter symbols on SE, esp. ones I use like f
, x
, etc. -- thanks for the accept!$endgroup$
– Michael E2
1 hour ago
$begingroup$
Note that blocking
f
(Block[{f}, ...]
) isn't necessary. It was just to prevent f
from being defined, which is a habit I have with single-lettter symbols on SE, esp. ones I use like f
, x
, etc. -- thanks for the accept!$endgroup$
– Michael E2
1 hour ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Here's a way:
Block[{f},
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
{fit, intermediates} =
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 30,
Method -> {"DifferentialEvolution",
"InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :>
Sow[{Optimization`NMinimizeDump`vecs,
Optimization`NMinimizeDump`vals}]]];
]
Manipulate[
Graphics[{
PointSize[Medium],
Point[intermediates[[1, n, 1]],
VertexColors ->
ColorData["Rainbow"] /@
Rescale[intermediates[[1, n, 2]],
MinMax[intermediates[[1, All, 2]]]]]
},
PlotRange -> 5, Frame -> True],
{n, 1, Length@intermediates[[1]], 1}
]
You can find out about things like Optimization`NMinimizeDump`vecs
by inspecting the code for Optimization`NMinimizeDump`CoreDE
.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193009%2fminimizing-with-differential-evolution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here's a way:
Block[{f},
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
{fit, intermediates} =
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 30,
Method -> {"DifferentialEvolution",
"InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :>
Sow[{Optimization`NMinimizeDump`vecs,
Optimization`NMinimizeDump`vals}]]];
]
Manipulate[
Graphics[{
PointSize[Medium],
Point[intermediates[[1, n, 1]],
VertexColors ->
ColorData["Rainbow"] /@
Rescale[intermediates[[1, n, 2]],
MinMax[intermediates[[1, All, 2]]]]]
},
PlotRange -> 5, Frame -> True],
{n, 1, Length@intermediates[[1]], 1}
]
You can find out about things like Optimization`NMinimizeDump`vecs
by inspecting the code for Optimization`NMinimizeDump`CoreDE
.
$endgroup$
add a comment |
$begingroup$
Here's a way:
Block[{f},
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
{fit, intermediates} =
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 30,
Method -> {"DifferentialEvolution",
"InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :>
Sow[{Optimization`NMinimizeDump`vecs,
Optimization`NMinimizeDump`vals}]]];
]
Manipulate[
Graphics[{
PointSize[Medium],
Point[intermediates[[1, n, 1]],
VertexColors ->
ColorData["Rainbow"] /@
Rescale[intermediates[[1, n, 2]],
MinMax[intermediates[[1, All, 2]]]]]
},
PlotRange -> 5, Frame -> True],
{n, 1, Length@intermediates[[1]], 1}
]
You can find out about things like Optimization`NMinimizeDump`vecs
by inspecting the code for Optimization`NMinimizeDump`CoreDE
.
$endgroup$
add a comment |
$begingroup$
Here's a way:
Block[{f},
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
{fit, intermediates} =
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 30,
Method -> {"DifferentialEvolution",
"InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :>
Sow[{Optimization`NMinimizeDump`vecs,
Optimization`NMinimizeDump`vals}]]];
]
Manipulate[
Graphics[{
PointSize[Medium],
Point[intermediates[[1, n, 1]],
VertexColors ->
ColorData["Rainbow"] /@
Rescale[intermediates[[1, n, 2]],
MinMax[intermediates[[1, All, 2]]]]]
},
PlotRange -> 5, Frame -> True],
{n, 1, Length@intermediates[[1]], 1}
]
You can find out about things like Optimization`NMinimizeDump`vecs
by inspecting the code for Optimization`NMinimizeDump`CoreDE
.
$endgroup$
Here's a way:
Block[{f},
f[x_, y_] := -20 E^(-0.2 Sqrt[0.5 (x^2 + y^2)]) -
E^(0.5 (Cos[2 [Pi] x] + Cos[2 [Pi] y])) + E + 20;
{fit, intermediates} =
Reap[NMinimize[{f[x, y], -5 <= x <= 5, -5 <= y <= 5}, {x, y},
MaxIterations -> 30,
Method -> {"DifferentialEvolution",
"InitialPoints" -> Tuples[Range[-5, 5], 2]},
StepMonitor :>
Sow[{Optimization`NMinimizeDump`vecs,
Optimization`NMinimizeDump`vals}]]];
]
Manipulate[
Graphics[{
PointSize[Medium],
Point[intermediates[[1, n, 1]],
VertexColors ->
ColorData["Rainbow"] /@
Rescale[intermediates[[1, n, 2]],
MinMax[intermediates[[1, All, 2]]]]]
},
PlotRange -> 5, Frame -> True],
{n, 1, Length@intermediates[[1]], 1}
]
You can find out about things like Optimization`NMinimizeDump`vecs
by inspecting the code for Optimization`NMinimizeDump`CoreDE
.
answered 2 hours ago
Michael E2Michael E2
148k12198478
148k12198478
add a comment |
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193009%2fminimizing-with-differential-evolution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Note that blocking
f
(Block[{f}, ...]
) isn't necessary. It was just to preventf
from being defined, which is a habit I have with single-lettter symbols on SE, esp. ones I use likef
,x
, etc. -- thanks for the accept!$endgroup$
– Michael E2
1 hour ago