How to implement gridsearchCV for onevsrestclassifier of LogisticRegression classifier?
$begingroup$
parameters = [{'C': [10**-2, 10**-1, 10**0,10**1, 10**2, 10**3]}]
model_tunning = GridSearchCV(OneVsRestClassifier(LogisticRegression(penalty='l1')), param_grid=parameters,scoring="f1")
model_tunning.fit(x_train_multilabel, y_train)
ValueError Traceback (most recent call last)
<ipython-input-38-5d5850fe8978> in <module>()
2
3 model_tunning = GridSearchCV(OneVsRestClassifier(LogisticRegression(penalty='l1')), param_grid=parameters,scoring="f1")
----> 4 model_tunning.fit(x_train_multilabel, y_train)
ValueError: Invalid parameter C for estimator OneVsRestClassifier(estimator=LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
penalty='l1', random_state=None, solver='liblinear', tol=0.0001,
verbose=0, warm_start=False),
n_jobs=1). Check the list of available parameters with `estimator.get_params().keys()
logistic-regression
$endgroup$
bumped to the homepage by Community♦ 32 secs ago
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
add a comment |
$begingroup$
parameters = [{'C': [10**-2, 10**-1, 10**0,10**1, 10**2, 10**3]}]
model_tunning = GridSearchCV(OneVsRestClassifier(LogisticRegression(penalty='l1')), param_grid=parameters,scoring="f1")
model_tunning.fit(x_train_multilabel, y_train)
ValueError Traceback (most recent call last)
<ipython-input-38-5d5850fe8978> in <module>()
2
3 model_tunning = GridSearchCV(OneVsRestClassifier(LogisticRegression(penalty='l1')), param_grid=parameters,scoring="f1")
----> 4 model_tunning.fit(x_train_multilabel, y_train)
ValueError: Invalid parameter C for estimator OneVsRestClassifier(estimator=LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
penalty='l1', random_state=None, solver='liblinear', tol=0.0001,
verbose=0, warm_start=False),
n_jobs=1). Check the list of available parameters with `estimator.get_params().keys()
logistic-regression
$endgroup$
bumped to the homepage by Community♦ 32 secs ago
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
add a comment |
$begingroup$
parameters = [{'C': [10**-2, 10**-1, 10**0,10**1, 10**2, 10**3]}]
model_tunning = GridSearchCV(OneVsRestClassifier(LogisticRegression(penalty='l1')), param_grid=parameters,scoring="f1")
model_tunning.fit(x_train_multilabel, y_train)
ValueError Traceback (most recent call last)
<ipython-input-38-5d5850fe8978> in <module>()
2
3 model_tunning = GridSearchCV(OneVsRestClassifier(LogisticRegression(penalty='l1')), param_grid=parameters,scoring="f1")
----> 4 model_tunning.fit(x_train_multilabel, y_train)
ValueError: Invalid parameter C for estimator OneVsRestClassifier(estimator=LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
penalty='l1', random_state=None, solver='liblinear', tol=0.0001,
verbose=0, warm_start=False),
n_jobs=1). Check the list of available parameters with `estimator.get_params().keys()
logistic-regression
$endgroup$
parameters = [{'C': [10**-2, 10**-1, 10**0,10**1, 10**2, 10**3]}]
model_tunning = GridSearchCV(OneVsRestClassifier(LogisticRegression(penalty='l1')), param_grid=parameters,scoring="f1")
model_tunning.fit(x_train_multilabel, y_train)
ValueError Traceback (most recent call last)
<ipython-input-38-5d5850fe8978> in <module>()
2
3 model_tunning = GridSearchCV(OneVsRestClassifier(LogisticRegression(penalty='l1')), param_grid=parameters,scoring="f1")
----> 4 model_tunning.fit(x_train_multilabel, y_train)
ValueError: Invalid parameter C for estimator OneVsRestClassifier(estimator=LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
penalty='l1', random_state=None, solver='liblinear', tol=0.0001,
verbose=0, warm_start=False),
n_jobs=1). Check the list of available parameters with `estimator.get_params().keys()
logistic-regression
logistic-regression
edited Nov 26 '18 at 12:50
ebrahimi
7282821
7282821
asked Nov 25 '18 at 16:39
Satyam KumarSatyam Kumar
11
11
bumped to the homepage by Community♦ 32 secs ago
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
bumped to the homepage by Community♦ 32 secs ago
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
When you use nested estimators with grid search you can scope the parameters with __ as a separator. In this case the LogisticRegression model is stored as an attribute named estimator inside the OneVsRestClassifier model:
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier
tuned_parameters = [{'estimator__C': [100, 10, 1, 0.1, 0.01, 0.001, 0.0001]}]
# Find Optimal C by grid search
log_reg_clf = OneVsRestClassifier(LogisticRegression())
logistic_gs = GridSearchCV(log_reg_clf, tuned_parameters,scoring = 'f1_micro', cv=3)
logistic_gs.fit(x_train_bow, y_train)
print(logistic_gs.best_estimator_)
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f41680%2fhow-to-implement-gridsearchcv-for-onevsrestclassifier-of-logisticregression-clas%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
When you use nested estimators with grid search you can scope the parameters with __ as a separator. In this case the LogisticRegression model is stored as an attribute named estimator inside the OneVsRestClassifier model:
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier
tuned_parameters = [{'estimator__C': [100, 10, 1, 0.1, 0.01, 0.001, 0.0001]}]
# Find Optimal C by grid search
log_reg_clf = OneVsRestClassifier(LogisticRegression())
logistic_gs = GridSearchCV(log_reg_clf, tuned_parameters,scoring = 'f1_micro', cv=3)
logistic_gs.fit(x_train_bow, y_train)
print(logistic_gs.best_estimator_)
$endgroup$
add a comment |
$begingroup$
When you use nested estimators with grid search you can scope the parameters with __ as a separator. In this case the LogisticRegression model is stored as an attribute named estimator inside the OneVsRestClassifier model:
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier
tuned_parameters = [{'estimator__C': [100, 10, 1, 0.1, 0.01, 0.001, 0.0001]}]
# Find Optimal C by grid search
log_reg_clf = OneVsRestClassifier(LogisticRegression())
logistic_gs = GridSearchCV(log_reg_clf, tuned_parameters,scoring = 'f1_micro', cv=3)
logistic_gs.fit(x_train_bow, y_train)
print(logistic_gs.best_estimator_)
$endgroup$
add a comment |
$begingroup$
When you use nested estimators with grid search you can scope the parameters with __ as a separator. In this case the LogisticRegression model is stored as an attribute named estimator inside the OneVsRestClassifier model:
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier
tuned_parameters = [{'estimator__C': [100, 10, 1, 0.1, 0.01, 0.001, 0.0001]}]
# Find Optimal C by grid search
log_reg_clf = OneVsRestClassifier(LogisticRegression())
logistic_gs = GridSearchCV(log_reg_clf, tuned_parameters,scoring = 'f1_micro', cv=3)
logistic_gs.fit(x_train_bow, y_train)
print(logistic_gs.best_estimator_)
$endgroup$
When you use nested estimators with grid search you can scope the parameters with __ as a separator. In this case the LogisticRegression model is stored as an attribute named estimator inside the OneVsRestClassifier model:
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier
tuned_parameters = [{'estimator__C': [100, 10, 1, 0.1, 0.01, 0.001, 0.0001]}]
# Find Optimal C by grid search
log_reg_clf = OneVsRestClassifier(LogisticRegression())
logistic_gs = GridSearchCV(log_reg_clf, tuned_parameters,scoring = 'f1_micro', cv=3)
logistic_gs.fit(x_train_bow, y_train)
print(logistic_gs.best_estimator_)
answered Jan 8 at 6:55
NishantNishant
1
1
add a comment |
add a comment |
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f41680%2fhow-to-implement-gridsearchcv-for-onevsrestclassifier-of-logisticregression-clas%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown