How to implement gridsearchCV for onevsrestclassifier of LogisticRegression classifier?












0












$begingroup$


parameters = [{'C': [10**-2, 10**-1, 10**0,10**1, 10**2, 10**3]}]

model_tunning = GridSearchCV(OneVsRestClassifier(LogisticRegression(penalty='l1')), param_grid=parameters,scoring="f1")
model_tunning.fit(x_train_multilabel, y_train)




ValueError Traceback (most recent call last)
<ipython-input-38-5d5850fe8978> in <module>()
2
3 model_tunning = GridSearchCV(OneVsRestClassifier(LogisticRegression(penalty='l1')), param_grid=parameters,scoring="f1")
----> 4 model_tunning.fit(x_train_multilabel, y_train)

ValueError: Invalid parameter C for estimator OneVsRestClassifier(estimator=LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
penalty='l1', random_state=None, solver='liblinear', tol=0.0001,
verbose=0, warm_start=False),
n_jobs=1). Check the list of available parameters with `estimator.get_params().keys()









share|improve this question











$endgroup$




bumped to the homepage by Community 32 secs ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.




















    0












    $begingroup$


    parameters = [{'C': [10**-2, 10**-1, 10**0,10**1, 10**2, 10**3]}]

    model_tunning = GridSearchCV(OneVsRestClassifier(LogisticRegression(penalty='l1')), param_grid=parameters,scoring="f1")
    model_tunning.fit(x_train_multilabel, y_train)




    ValueError Traceback (most recent call last)
    <ipython-input-38-5d5850fe8978> in <module>()
    2
    3 model_tunning = GridSearchCV(OneVsRestClassifier(LogisticRegression(penalty='l1')), param_grid=parameters,scoring="f1")
    ----> 4 model_tunning.fit(x_train_multilabel, y_train)

    ValueError: Invalid parameter C for estimator OneVsRestClassifier(estimator=LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
    intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
    penalty='l1', random_state=None, solver='liblinear', tol=0.0001,
    verbose=0, warm_start=False),
    n_jobs=1). Check the list of available parameters with `estimator.get_params().keys()









    share|improve this question











    $endgroup$




    bumped to the homepage by Community 32 secs ago


    This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.


















      0












      0








      0





      $begingroup$


      parameters = [{'C': [10**-2, 10**-1, 10**0,10**1, 10**2, 10**3]}]

      model_tunning = GridSearchCV(OneVsRestClassifier(LogisticRegression(penalty='l1')), param_grid=parameters,scoring="f1")
      model_tunning.fit(x_train_multilabel, y_train)




      ValueError Traceback (most recent call last)
      <ipython-input-38-5d5850fe8978> in <module>()
      2
      3 model_tunning = GridSearchCV(OneVsRestClassifier(LogisticRegression(penalty='l1')), param_grid=parameters,scoring="f1")
      ----> 4 model_tunning.fit(x_train_multilabel, y_train)

      ValueError: Invalid parameter C for estimator OneVsRestClassifier(estimator=LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
      intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
      penalty='l1', random_state=None, solver='liblinear', tol=0.0001,
      verbose=0, warm_start=False),
      n_jobs=1). Check the list of available parameters with `estimator.get_params().keys()









      share|improve this question











      $endgroup$




      parameters = [{'C': [10**-2, 10**-1, 10**0,10**1, 10**2, 10**3]}]

      model_tunning = GridSearchCV(OneVsRestClassifier(LogisticRegression(penalty='l1')), param_grid=parameters,scoring="f1")
      model_tunning.fit(x_train_multilabel, y_train)




      ValueError Traceback (most recent call last)
      <ipython-input-38-5d5850fe8978> in <module>()
      2
      3 model_tunning = GridSearchCV(OneVsRestClassifier(LogisticRegression(penalty='l1')), param_grid=parameters,scoring="f1")
      ----> 4 model_tunning.fit(x_train_multilabel, y_train)

      ValueError: Invalid parameter C for estimator OneVsRestClassifier(estimator=LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
      intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
      penalty='l1', random_state=None, solver='liblinear', tol=0.0001,
      verbose=0, warm_start=False),
      n_jobs=1). Check the list of available parameters with `estimator.get_params().keys()






      logistic-regression






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 26 '18 at 12:50









      ebrahimi

      7282821




      7282821










      asked Nov 25 '18 at 16:39









      Satyam KumarSatyam Kumar

      11




      11





      bumped to the homepage by Community 32 secs ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.







      bumped to the homepage by Community 32 secs ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
























          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          When you use nested estimators with grid search you can scope the parameters with __ as a separator. In this case the LogisticRegression model is stored as an attribute named estimator inside the OneVsRestClassifier model:



          from sklearn.model_selection import GridSearchCV
          from sklearn.linear_model import LogisticRegression
          from sklearn.multiclass import OneVsRestClassifier

          tuned_parameters = [{'estimator__C': [100, 10, 1, 0.1, 0.01, 0.001, 0.0001]}]

          # Find Optimal C by grid search

          log_reg_clf = OneVsRestClassifier(LogisticRegression())

          logistic_gs = GridSearchCV(log_reg_clf, tuned_parameters,scoring = 'f1_micro', cv=3)

          logistic_gs.fit(x_train_bow, y_train)
          print(logistic_gs.best_estimator_)





          share|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "557"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f41680%2fhow-to-implement-gridsearchcv-for-onevsrestclassifier-of-logisticregression-clas%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            When you use nested estimators with grid search you can scope the parameters with __ as a separator. In this case the LogisticRegression model is stored as an attribute named estimator inside the OneVsRestClassifier model:



            from sklearn.model_selection import GridSearchCV
            from sklearn.linear_model import LogisticRegression
            from sklearn.multiclass import OneVsRestClassifier

            tuned_parameters = [{'estimator__C': [100, 10, 1, 0.1, 0.01, 0.001, 0.0001]}]

            # Find Optimal C by grid search

            log_reg_clf = OneVsRestClassifier(LogisticRegression())

            logistic_gs = GridSearchCV(log_reg_clf, tuned_parameters,scoring = 'f1_micro', cv=3)

            logistic_gs.fit(x_train_bow, y_train)
            print(logistic_gs.best_estimator_)





            share|improve this answer









            $endgroup$


















              0












              $begingroup$

              When you use nested estimators with grid search you can scope the parameters with __ as a separator. In this case the LogisticRegression model is stored as an attribute named estimator inside the OneVsRestClassifier model:



              from sklearn.model_selection import GridSearchCV
              from sklearn.linear_model import LogisticRegression
              from sklearn.multiclass import OneVsRestClassifier

              tuned_parameters = [{'estimator__C': [100, 10, 1, 0.1, 0.01, 0.001, 0.0001]}]

              # Find Optimal C by grid search

              log_reg_clf = OneVsRestClassifier(LogisticRegression())

              logistic_gs = GridSearchCV(log_reg_clf, tuned_parameters,scoring = 'f1_micro', cv=3)

              logistic_gs.fit(x_train_bow, y_train)
              print(logistic_gs.best_estimator_)





              share|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                When you use nested estimators with grid search you can scope the parameters with __ as a separator. In this case the LogisticRegression model is stored as an attribute named estimator inside the OneVsRestClassifier model:



                from sklearn.model_selection import GridSearchCV
                from sklearn.linear_model import LogisticRegression
                from sklearn.multiclass import OneVsRestClassifier

                tuned_parameters = [{'estimator__C': [100, 10, 1, 0.1, 0.01, 0.001, 0.0001]}]

                # Find Optimal C by grid search

                log_reg_clf = OneVsRestClassifier(LogisticRegression())

                logistic_gs = GridSearchCV(log_reg_clf, tuned_parameters,scoring = 'f1_micro', cv=3)

                logistic_gs.fit(x_train_bow, y_train)
                print(logistic_gs.best_estimator_)





                share|improve this answer









                $endgroup$



                When you use nested estimators with grid search you can scope the parameters with __ as a separator. In this case the LogisticRegression model is stored as an attribute named estimator inside the OneVsRestClassifier model:



                from sklearn.model_selection import GridSearchCV
                from sklearn.linear_model import LogisticRegression
                from sklearn.multiclass import OneVsRestClassifier

                tuned_parameters = [{'estimator__C': [100, 10, 1, 0.1, 0.01, 0.001, 0.0001]}]

                # Find Optimal C by grid search

                log_reg_clf = OneVsRestClassifier(LogisticRegression())

                logistic_gs = GridSearchCV(log_reg_clf, tuned_parameters,scoring = 'f1_micro', cv=3)

                logistic_gs.fit(x_train_bow, y_train)
                print(logistic_gs.best_estimator_)






                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Jan 8 at 6:55









                NishantNishant

                1




                1






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Data Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f41680%2fhow-to-implement-gridsearchcv-for-onevsrestclassifier-of-logisticregression-clas%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ponta tanko

                    Tantalo (mitologio)

                    Erzsébet Schaár