How to save ColumnTransfers ( scaler , one hot encoder , imputer..etc) for later predictions












0












$begingroup$


here is my code for a neural network I'm testing. I like to save my scales & encoders for later use in prediction. But Cannot figure out how



cat_steps = Pipeline([
('si', SimpleImputer(strategy='constant', fill_value='MISSING')),
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('ohehot', OneHotEncoder(sparse=False, handle_unknown='ignore'))
])
categoricalColumns = [
'advCode',
'
'Totalbonus',
]
# *********************************** Numerical Transformer ***************************************
num_steps = Pipeline([
('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())
])
numericalColumns = [
'height',

"weight",
]

# Collect all terformers in one
preprocessor = ColumnTransformer(
transformers=[
('num', num_steps, numericalColumns),
('cat', cat_steps, categoricalColumns)
]
)
X_train = preprocessor.fit_transform(X_train)


I tried saving and loading column transfer like this



 from sklearn.externals import joblib
joblib.dump(preprocessor, 'filename.pkl')

preprocessor = load('filename.pkl')

Loading the file returns KeyError: 0


Is it possible for me to save these values in order to use it later for predictions.










share|improve this question











$endgroup$












  • $begingroup$
    Have you tried to pickle them?
    $endgroup$
    – Simon Larsson
    18 hours ago










  • $begingroup$
    yes . I tried saving and loading column transfer like this from sklearn.externals import joblib joblib.dump(preprocessor, 'filename.pkl') preprocessor = load('filename.pkl') Loading the file returns KeyError: 0
    $endgroup$
    – Noob Coder
    18 hours ago
















0












$begingroup$


here is my code for a neural network I'm testing. I like to save my scales & encoders for later use in prediction. But Cannot figure out how



cat_steps = Pipeline([
('si', SimpleImputer(strategy='constant', fill_value='MISSING')),
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('ohehot', OneHotEncoder(sparse=False, handle_unknown='ignore'))
])
categoricalColumns = [
'advCode',
'
'Totalbonus',
]
# *********************************** Numerical Transformer ***************************************
num_steps = Pipeline([
('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())
])
numericalColumns = [
'height',

"weight",
]

# Collect all terformers in one
preprocessor = ColumnTransformer(
transformers=[
('num', num_steps, numericalColumns),
('cat', cat_steps, categoricalColumns)
]
)
X_train = preprocessor.fit_transform(X_train)


I tried saving and loading column transfer like this



 from sklearn.externals import joblib
joblib.dump(preprocessor, 'filename.pkl')

preprocessor = load('filename.pkl')

Loading the file returns KeyError: 0


Is it possible for me to save these values in order to use it later for predictions.










share|improve this question











$endgroup$












  • $begingroup$
    Have you tried to pickle them?
    $endgroup$
    – Simon Larsson
    18 hours ago










  • $begingroup$
    yes . I tried saving and loading column transfer like this from sklearn.externals import joblib joblib.dump(preprocessor, 'filename.pkl') preprocessor = load('filename.pkl') Loading the file returns KeyError: 0
    $endgroup$
    – Noob Coder
    18 hours ago














0












0








0





$begingroup$


here is my code for a neural network I'm testing. I like to save my scales & encoders for later use in prediction. But Cannot figure out how



cat_steps = Pipeline([
('si', SimpleImputer(strategy='constant', fill_value='MISSING')),
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('ohehot', OneHotEncoder(sparse=False, handle_unknown='ignore'))
])
categoricalColumns = [
'advCode',
'
'Totalbonus',
]
# *********************************** Numerical Transformer ***************************************
num_steps = Pipeline([
('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())
])
numericalColumns = [
'height',

"weight",
]

# Collect all terformers in one
preprocessor = ColumnTransformer(
transformers=[
('num', num_steps, numericalColumns),
('cat', cat_steps, categoricalColumns)
]
)
X_train = preprocessor.fit_transform(X_train)


I tried saving and loading column transfer like this



 from sklearn.externals import joblib
joblib.dump(preprocessor, 'filename.pkl')

preprocessor = load('filename.pkl')

Loading the file returns KeyError: 0


Is it possible for me to save these values in order to use it later for predictions.










share|improve this question











$endgroup$




here is my code for a neural network I'm testing. I like to save my scales & encoders for later use in prediction. But Cannot figure out how



cat_steps = Pipeline([
('si', SimpleImputer(strategy='constant', fill_value='MISSING')),
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('ohehot', OneHotEncoder(sparse=False, handle_unknown='ignore'))
])
categoricalColumns = [
'advCode',
'
'Totalbonus',
]
# *********************************** Numerical Transformer ***************************************
num_steps = Pipeline([
('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())
])
numericalColumns = [
'height',

"weight",
]

# Collect all terformers in one
preprocessor = ColumnTransformer(
transformers=[
('num', num_steps, numericalColumns),
('cat', cat_steps, categoricalColumns)
]
)
X_train = preprocessor.fit_transform(X_train)


I tried saving and loading column transfer like this



 from sklearn.externals import joblib
joblib.dump(preprocessor, 'filename.pkl')

preprocessor = load('filename.pkl')

Loading the file returns KeyError: 0


Is it possible for me to save these values in order to use it later for predictions.







scikit-learn






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 16 hours ago







Noob Coder

















asked 19 hours ago









Noob CoderNoob Coder

133




133












  • $begingroup$
    Have you tried to pickle them?
    $endgroup$
    – Simon Larsson
    18 hours ago










  • $begingroup$
    yes . I tried saving and loading column transfer like this from sklearn.externals import joblib joblib.dump(preprocessor, 'filename.pkl') preprocessor = load('filename.pkl') Loading the file returns KeyError: 0
    $endgroup$
    – Noob Coder
    18 hours ago


















  • $begingroup$
    Have you tried to pickle them?
    $endgroup$
    – Simon Larsson
    18 hours ago










  • $begingroup$
    yes . I tried saving and loading column transfer like this from sklearn.externals import joblib joblib.dump(preprocessor, 'filename.pkl') preprocessor = load('filename.pkl') Loading the file returns KeyError: 0
    $endgroup$
    – Noob Coder
    18 hours ago
















$begingroup$
Have you tried to pickle them?
$endgroup$
– Simon Larsson
18 hours ago




$begingroup$
Have you tried to pickle them?
$endgroup$
– Simon Larsson
18 hours ago












$begingroup$
yes . I tried saving and loading column transfer like this from sklearn.externals import joblib joblib.dump(preprocessor, 'filename.pkl') preprocessor = load('filename.pkl') Loading the file returns KeyError: 0
$endgroup$
– Noob Coder
18 hours ago




$begingroup$
yes . I tried saving and loading column transfer like this from sklearn.externals import joblib joblib.dump(preprocessor, 'filename.pkl') preprocessor = load('filename.pkl') Loading the file returns KeyError: 0
$endgroup$
– Noob Coder
18 hours ago










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f44179%2fhow-to-save-columntransfers-scaler-one-hot-encoder-imputer-etc-for-later%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Data Science Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f44179%2fhow-to-save-columntransfers-scaler-one-hot-encoder-imputer-etc-for-later%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ponta tanko

Tantalo (mitologio)

Erzsébet Schaár