How to save ColumnTransfers ( scaler , one hot encoder , imputer..etc) for later predictions
$begingroup$
here is my code for a neural network I'm testing. I like to save my scales & encoders for later use in prediction. But Cannot figure out how
cat_steps = Pipeline([
('si', SimpleImputer(strategy='constant', fill_value='MISSING')),
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('ohehot', OneHotEncoder(sparse=False, handle_unknown='ignore'))
])
categoricalColumns = [
'advCode',
'
'Totalbonus',
]
# *********************************** Numerical Transformer ***************************************
num_steps = Pipeline([
('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())
])
numericalColumns = [
'height',
"weight",
]
# Collect all terformers in one
preprocessor = ColumnTransformer(
transformers=[
('num', num_steps, numericalColumns),
('cat', cat_steps, categoricalColumns)
]
)
X_train = preprocessor.fit_transform(X_train)
I tried saving and loading column transfer like this
from sklearn.externals import joblib
joblib.dump(preprocessor, 'filename.pkl')
preprocessor = load('filename.pkl')
Loading the file returns KeyError: 0
Is it possible for me to save these values in order to use it later for predictions.
scikit-learn
$endgroup$
add a comment |
$begingroup$
here is my code for a neural network I'm testing. I like to save my scales & encoders for later use in prediction. But Cannot figure out how
cat_steps = Pipeline([
('si', SimpleImputer(strategy='constant', fill_value='MISSING')),
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('ohehot', OneHotEncoder(sparse=False, handle_unknown='ignore'))
])
categoricalColumns = [
'advCode',
'
'Totalbonus',
]
# *********************************** Numerical Transformer ***************************************
num_steps = Pipeline([
('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())
])
numericalColumns = [
'height',
"weight",
]
# Collect all terformers in one
preprocessor = ColumnTransformer(
transformers=[
('num', num_steps, numericalColumns),
('cat', cat_steps, categoricalColumns)
]
)
X_train = preprocessor.fit_transform(X_train)
I tried saving and loading column transfer like this
from sklearn.externals import joblib
joblib.dump(preprocessor, 'filename.pkl')
preprocessor = load('filename.pkl')
Loading the file returns KeyError: 0
Is it possible for me to save these values in order to use it later for predictions.
scikit-learn
$endgroup$
$begingroup$
Have you tried to pickle them?
$endgroup$
– Simon Larsson
18 hours ago
$begingroup$
yes . I tried saving and loading column transfer like this from sklearn.externals import joblib joblib.dump(preprocessor, 'filename.pkl') preprocessor = load('filename.pkl') Loading the file returns KeyError: 0
$endgroup$
– Noob Coder
18 hours ago
add a comment |
$begingroup$
here is my code for a neural network I'm testing. I like to save my scales & encoders for later use in prediction. But Cannot figure out how
cat_steps = Pipeline([
('si', SimpleImputer(strategy='constant', fill_value='MISSING')),
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('ohehot', OneHotEncoder(sparse=False, handle_unknown='ignore'))
])
categoricalColumns = [
'advCode',
'
'Totalbonus',
]
# *********************************** Numerical Transformer ***************************************
num_steps = Pipeline([
('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())
])
numericalColumns = [
'height',
"weight",
]
# Collect all terformers in one
preprocessor = ColumnTransformer(
transformers=[
('num', num_steps, numericalColumns),
('cat', cat_steps, categoricalColumns)
]
)
X_train = preprocessor.fit_transform(X_train)
I tried saving and loading column transfer like this
from sklearn.externals import joblib
joblib.dump(preprocessor, 'filename.pkl')
preprocessor = load('filename.pkl')
Loading the file returns KeyError: 0
Is it possible for me to save these values in order to use it later for predictions.
scikit-learn
$endgroup$
here is my code for a neural network I'm testing. I like to save my scales & encoders for later use in prediction. But Cannot figure out how
cat_steps = Pipeline([
('si', SimpleImputer(strategy='constant', fill_value='MISSING')),
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('ohehot', OneHotEncoder(sparse=False, handle_unknown='ignore'))
])
categoricalColumns = [
'advCode',
'
'Totalbonus',
]
# *********************************** Numerical Transformer ***************************************
num_steps = Pipeline([
('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())
])
numericalColumns = [
'height',
"weight",
]
# Collect all terformers in one
preprocessor = ColumnTransformer(
transformers=[
('num', num_steps, numericalColumns),
('cat', cat_steps, categoricalColumns)
]
)
X_train = preprocessor.fit_transform(X_train)
I tried saving and loading column transfer like this
from sklearn.externals import joblib
joblib.dump(preprocessor, 'filename.pkl')
preprocessor = load('filename.pkl')
Loading the file returns KeyError: 0
Is it possible for me to save these values in order to use it later for predictions.
scikit-learn
scikit-learn
edited 16 hours ago
Noob Coder
asked 19 hours ago
Noob CoderNoob Coder
133
133
$begingroup$
Have you tried to pickle them?
$endgroup$
– Simon Larsson
18 hours ago
$begingroup$
yes . I tried saving and loading column transfer like this from sklearn.externals import joblib joblib.dump(preprocessor, 'filename.pkl') preprocessor = load('filename.pkl') Loading the file returns KeyError: 0
$endgroup$
– Noob Coder
18 hours ago
add a comment |
$begingroup$
Have you tried to pickle them?
$endgroup$
– Simon Larsson
18 hours ago
$begingroup$
yes . I tried saving and loading column transfer like this from sklearn.externals import joblib joblib.dump(preprocessor, 'filename.pkl') preprocessor = load('filename.pkl') Loading the file returns KeyError: 0
$endgroup$
– Noob Coder
18 hours ago
$begingroup$
Have you tried to pickle them?
$endgroup$
– Simon Larsson
18 hours ago
$begingroup$
Have you tried to pickle them?
$endgroup$
– Simon Larsson
18 hours ago
$begingroup$
yes . I tried saving and loading column transfer like this from sklearn.externals import joblib joblib.dump(preprocessor, 'filename.pkl') preprocessor = load('filename.pkl') Loading the file returns KeyError: 0
$endgroup$
– Noob Coder
18 hours ago
$begingroup$
yes . I tried saving and loading column transfer like this from sklearn.externals import joblib joblib.dump(preprocessor, 'filename.pkl') preprocessor = load('filename.pkl') Loading the file returns KeyError: 0
$endgroup$
– Noob Coder
18 hours ago
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f44179%2fhow-to-save-columntransfers-scaler-one-hot-encoder-imputer-etc-for-later%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f44179%2fhow-to-save-columntransfers-scaler-one-hot-encoder-imputer-etc-for-later%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Have you tried to pickle them?
$endgroup$
– Simon Larsson
18 hours ago
$begingroup$
yes . I tried saving and loading column transfer like this from sklearn.externals import joblib joblib.dump(preprocessor, 'filename.pkl') preprocessor = load('filename.pkl') Loading the file returns KeyError: 0
$endgroup$
– Noob Coder
18 hours ago