amount of data required for a good ann mdel












0












$begingroup$


I am new to deep learning and started with ANN. I have a dataset with 15 parameters and 2100 rows. r2_score with Multi linear regression and random forest models is around 85% but when i try an ANN with this dataset r2_score is very less, around 32% . Is it because the number of rows are less? If so atleast what number of rows are required to go for ANN. I have added the code too for reference



import pandas as pd



dataset = pd.read_csv('chiller-2_runningdata_withcommon_parameters.csv')



dataset = dataset.drop(['DateTime','delta','KWH','RunStatus','OP Hours'], axis=1)



X = dataset.iloc[:,:-1 ].values
y = dataset.iloc[:,15:16].values



Splitting the dataset into the Training set and Test set



from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)



Feature Scaling



from sklearn.preprocessing import StandardScaler



sc_X = StandardScaler()



sc_Y = StandardScaler()



X_train = sc_X.fit_transform(X_train)



X_test = sc_X.transform(X_test)



y_train = sc_Y.fit_transform(y_train)



Importing the Keras libraries and packages



import keras
from keras.models import Sequential
from keras.layers import Dense



Initialising the ANN



classifier = Sequential()



Adding the input layer and the first hidden layer



classifier.add(Dense(units = 8, kernel_initializer = 'uniform', activation = 'relu', input_dim = 15))



Adding the second hidden layer



classifier.add(Dense(units = 8, kernel_initializer = 'uniform', activation = 'relu'))



Adding the output layer



classifier.add(Dense(units = 1, kernel_initializer = 'uniform'))



Compiling the ANN



classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])



Fitting the ANN to the Training set



classifier.fit(X_train, y_train, batch_size = 32, epochs = 500)



Predicting the Test set results



y_pred = classifier.predict(X_test)
y_pred = sc_Y.inverse_transform(y_pred)
y_pred_train = classifier.predict(X_train)
y_pred_train = sc_Y.inverse_transform(y_pred_train)
y_train = sc_Y.inverse_transform(y_train)



calculate r2_score



from sklearn.metrics import r2_score
score_train = r2_score(y_pred_train,y_train)
score_test = r2_score(y_pred,y_test)









share









$endgroup$

















    0












    $begingroup$


    I am new to deep learning and started with ANN. I have a dataset with 15 parameters and 2100 rows. r2_score with Multi linear regression and random forest models is around 85% but when i try an ANN with this dataset r2_score is very less, around 32% . Is it because the number of rows are less? If so atleast what number of rows are required to go for ANN. I have added the code too for reference



    import pandas as pd



    dataset = pd.read_csv('chiller-2_runningdata_withcommon_parameters.csv')



    dataset = dataset.drop(['DateTime','delta','KWH','RunStatus','OP Hours'], axis=1)



    X = dataset.iloc[:,:-1 ].values
    y = dataset.iloc[:,15:16].values



    Splitting the dataset into the Training set and Test set



    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)



    Feature Scaling



    from sklearn.preprocessing import StandardScaler



    sc_X = StandardScaler()



    sc_Y = StandardScaler()



    X_train = sc_X.fit_transform(X_train)



    X_test = sc_X.transform(X_test)



    y_train = sc_Y.fit_transform(y_train)



    Importing the Keras libraries and packages



    import keras
    from keras.models import Sequential
    from keras.layers import Dense



    Initialising the ANN



    classifier = Sequential()



    Adding the input layer and the first hidden layer



    classifier.add(Dense(units = 8, kernel_initializer = 'uniform', activation = 'relu', input_dim = 15))



    Adding the second hidden layer



    classifier.add(Dense(units = 8, kernel_initializer = 'uniform', activation = 'relu'))



    Adding the output layer



    classifier.add(Dense(units = 1, kernel_initializer = 'uniform'))



    Compiling the ANN



    classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])



    Fitting the ANN to the Training set



    classifier.fit(X_train, y_train, batch_size = 32, epochs = 500)



    Predicting the Test set results



    y_pred = classifier.predict(X_test)
    y_pred = sc_Y.inverse_transform(y_pred)
    y_pred_train = classifier.predict(X_train)
    y_pred_train = sc_Y.inverse_transform(y_pred_train)
    y_train = sc_Y.inverse_transform(y_train)



    calculate r2_score



    from sklearn.metrics import r2_score
    score_train = r2_score(y_pred_train,y_train)
    score_test = r2_score(y_pred,y_test)









    share









    $endgroup$















      0












      0








      0





      $begingroup$


      I am new to deep learning and started with ANN. I have a dataset with 15 parameters and 2100 rows. r2_score with Multi linear regression and random forest models is around 85% but when i try an ANN with this dataset r2_score is very less, around 32% . Is it because the number of rows are less? If so atleast what number of rows are required to go for ANN. I have added the code too for reference



      import pandas as pd



      dataset = pd.read_csv('chiller-2_runningdata_withcommon_parameters.csv')



      dataset = dataset.drop(['DateTime','delta','KWH','RunStatus','OP Hours'], axis=1)



      X = dataset.iloc[:,:-1 ].values
      y = dataset.iloc[:,15:16].values



      Splitting the dataset into the Training set and Test set



      from sklearn.model_selection import train_test_split
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)



      Feature Scaling



      from sklearn.preprocessing import StandardScaler



      sc_X = StandardScaler()



      sc_Y = StandardScaler()



      X_train = sc_X.fit_transform(X_train)



      X_test = sc_X.transform(X_test)



      y_train = sc_Y.fit_transform(y_train)



      Importing the Keras libraries and packages



      import keras
      from keras.models import Sequential
      from keras.layers import Dense



      Initialising the ANN



      classifier = Sequential()



      Adding the input layer and the first hidden layer



      classifier.add(Dense(units = 8, kernel_initializer = 'uniform', activation = 'relu', input_dim = 15))



      Adding the second hidden layer



      classifier.add(Dense(units = 8, kernel_initializer = 'uniform', activation = 'relu'))



      Adding the output layer



      classifier.add(Dense(units = 1, kernel_initializer = 'uniform'))



      Compiling the ANN



      classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])



      Fitting the ANN to the Training set



      classifier.fit(X_train, y_train, batch_size = 32, epochs = 500)



      Predicting the Test set results



      y_pred = classifier.predict(X_test)
      y_pred = sc_Y.inverse_transform(y_pred)
      y_pred_train = classifier.predict(X_train)
      y_pred_train = sc_Y.inverse_transform(y_pred_train)
      y_train = sc_Y.inverse_transform(y_train)



      calculate r2_score



      from sklearn.metrics import r2_score
      score_train = r2_score(y_pred_train,y_train)
      score_test = r2_score(y_pred,y_test)









      share









      $endgroup$




      I am new to deep learning and started with ANN. I have a dataset with 15 parameters and 2100 rows. r2_score with Multi linear regression and random forest models is around 85% but when i try an ANN with this dataset r2_score is very less, around 32% . Is it because the number of rows are less? If so atleast what number of rows are required to go for ANN. I have added the code too for reference



      import pandas as pd



      dataset = pd.read_csv('chiller-2_runningdata_withcommon_parameters.csv')



      dataset = dataset.drop(['DateTime','delta','KWH','RunStatus','OP Hours'], axis=1)



      X = dataset.iloc[:,:-1 ].values
      y = dataset.iloc[:,15:16].values



      Splitting the dataset into the Training set and Test set



      from sklearn.model_selection import train_test_split
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)



      Feature Scaling



      from sklearn.preprocessing import StandardScaler



      sc_X = StandardScaler()



      sc_Y = StandardScaler()



      X_train = sc_X.fit_transform(X_train)



      X_test = sc_X.transform(X_test)



      y_train = sc_Y.fit_transform(y_train)



      Importing the Keras libraries and packages



      import keras
      from keras.models import Sequential
      from keras.layers import Dense



      Initialising the ANN



      classifier = Sequential()



      Adding the input layer and the first hidden layer



      classifier.add(Dense(units = 8, kernel_initializer = 'uniform', activation = 'relu', input_dim = 15))



      Adding the second hidden layer



      classifier.add(Dense(units = 8, kernel_initializer = 'uniform', activation = 'relu'))



      Adding the output layer



      classifier.add(Dense(units = 1, kernel_initializer = 'uniform'))



      Compiling the ANN



      classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])



      Fitting the ANN to the Training set



      classifier.fit(X_train, y_train, batch_size = 32, epochs = 500)



      Predicting the Test set results



      y_pred = classifier.predict(X_test)
      y_pred = sc_Y.inverse_transform(y_pred)
      y_pred_train = classifier.predict(X_train)
      y_pred_train = sc_Y.inverse_transform(y_pred_train)
      y_train = sc_Y.inverse_transform(y_train)



      calculate r2_score



      from sklearn.metrics import r2_score
      score_train = r2_score(y_pred_train,y_train)
      score_test = r2_score(y_pred,y_test)







      machine-learning neural-network dataset regression





      share












      share










      share



      share










      asked 7 mins ago









      ChinniChinni

      61




      61






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "557"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46368%2famount-of-data-required-for-a-good-ann-mdel%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46368%2famount-of-data-required-for-a-good-ann-mdel%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ponta tanko

          Tantalo (mitologio)

          Erzsébet Schaár