Proof involving the spectral radius and the Jordan canonical form












2












$begingroup$



Let $A$ be a square matrix. Show that if $$lim_{n to infty} A^{n} = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



Hint: Use the Jordan canonical form.




I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.










share|cite|improve this question











$endgroup$

















    2












    $begingroup$



    Let $A$ be a square matrix. Show that if $$lim_{n to infty} A^{n} = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



    Hint: Use the Jordan canonical form.




    I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$



      Let $A$ be a square matrix. Show that if $$lim_{n to infty} A^{n} = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



      Hint: Use the Jordan canonical form.




      I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.










      share|cite|improve this question











      $endgroup$





      Let $A$ be a square matrix. Show that if $$lim_{n to infty} A^{n} = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



      Hint: Use the Jordan canonical form.




      I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.







      linear-algebra matrices jordan-normal-form spectral-radius






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 20 mins ago









      Rodrigo de Azevedo

      13.2k41961




      13.2k41961










      asked 1 hour ago









      mXdXmXdX

      1068




      1068






















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            Hint



            $$A=PJP^{-1} \
            J=begin{bmatrix}
            lambda_1 & * & 0 & 0 & 0 & ... & 0 \
            0& lambda_2 & * & 0 & 0 & ... & 0 \
            ...&...&...&...&....&....&....\
            0 & 0 & 0 & 0&0&...&lambda_n \
            end{bmatrix}$$

            where each $*$ is either $0$ or $1$.



            Prove by induction that
            $$J^m=begin{bmatrix}
            lambda_1^m & star & star & star & star & ... & star \
            0& lambda_2^m & star & star & star & ... & star \
            ...&...&...&...&....&....&....\
            0 & 0 & 0 & 0&0&...&lambda_n^m \
            end{bmatrix}$$

            where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
            with the $m$^th powers of the eigenvalues on the diagonal.



            Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              So, $A^{m} = PJ^{m}P^{-1}$. If I can show what you're asking by induction, would the limit of $J^{m} = 0$? I'm sure it is because the diagonal entries are less than one, right?
              $endgroup$
              – mXdX
              1 hour ago










            • $begingroup$
              @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^{-1} A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
              $endgroup$
              – N. S.
              1 hour ago










            • $begingroup$
              I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^{m}$ are the $m$th powers of the eigenvalues.
              $endgroup$
              – mXdX
              55 mins ago












            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189376%2fproof-involving-the-spectral-radius-and-the-jordan-canonical-form%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            5












            $begingroup$

            You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






            share|cite|improve this answer









            $endgroup$


















              5












              $begingroup$

              You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






              share|cite|improve this answer









              $endgroup$
















                5












                5








                5





                $begingroup$

                You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






                share|cite|improve this answer









                $endgroup$



                You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 1 hour ago









                Robert IsraelRobert Israel

                332k23221478




                332k23221478























                    2












                    $begingroup$

                    Hint



                    $$A=PJP^{-1} \
                    J=begin{bmatrix}
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    end{bmatrix}$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=begin{bmatrix}
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    end{bmatrix}$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      So, $A^{m} = PJ^{m}P^{-1}$. If I can show what you're asking by induction, would the limit of $J^{m} = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      1 hour ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^{-1} A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      1 hour ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^{m}$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      55 mins ago
















                    2












                    $begingroup$

                    Hint



                    $$A=PJP^{-1} \
                    J=begin{bmatrix}
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    end{bmatrix}$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=begin{bmatrix}
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    end{bmatrix}$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      So, $A^{m} = PJ^{m}P^{-1}$. If I can show what you're asking by induction, would the limit of $J^{m} = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      1 hour ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^{-1} A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      1 hour ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^{m}$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      55 mins ago














                    2












                    2








                    2





                    $begingroup$

                    Hint



                    $$A=PJP^{-1} \
                    J=begin{bmatrix}
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    end{bmatrix}$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=begin{bmatrix}
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    end{bmatrix}$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






                    share|cite|improve this answer









                    $endgroup$



                    Hint



                    $$A=PJP^{-1} \
                    J=begin{bmatrix}
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    end{bmatrix}$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=begin{bmatrix}
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    end{bmatrix}$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 1 hour ago









                    N. S.N. S.

                    105k7115210




                    105k7115210












                    • $begingroup$
                      So, $A^{m} = PJ^{m}P^{-1}$. If I can show what you're asking by induction, would the limit of $J^{m} = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      1 hour ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^{-1} A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      1 hour ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^{m}$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      55 mins ago


















                    • $begingroup$
                      So, $A^{m} = PJ^{m}P^{-1}$. If I can show what you're asking by induction, would the limit of $J^{m} = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      1 hour ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^{-1} A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      1 hour ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^{m}$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      55 mins ago
















                    $begingroup$
                    So, $A^{m} = PJ^{m}P^{-1}$. If I can show what you're asking by induction, would the limit of $J^{m} = 0$? I'm sure it is because the diagonal entries are less than one, right?
                    $endgroup$
                    – mXdX
                    1 hour ago




                    $begingroup$
                    So, $A^{m} = PJ^{m}P^{-1}$. If I can show what you're asking by induction, would the limit of $J^{m} = 0$? I'm sure it is because the diagonal entries are less than one, right?
                    $endgroup$
                    – mXdX
                    1 hour ago












                    $begingroup$
                    @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^{-1} A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                    $endgroup$
                    – N. S.
                    1 hour ago




                    $begingroup$
                    @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^{-1} A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                    $endgroup$
                    – N. S.
                    1 hour ago












                    $begingroup$
                    I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^{m}$ are the $m$th powers of the eigenvalues.
                    $endgroup$
                    – mXdX
                    55 mins ago




                    $begingroup$
                    I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^{m}$ are the $m$th powers of the eigenvalues.
                    $endgroup$
                    – mXdX
                    55 mins ago


















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189376%2fproof-involving-the-spectral-radius-and-the-jordan-canonical-form%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ponta tanko

                    Tantalo (mitologio)

                    Erzsébet Schaár