Create all numbers from 1-100 using 1,3,3,6
$begingroup$
Create all the numbers from $1$ to $100$ using the numbers $1$,$3$,$3$, and $6$.
- You can only use each number once, except for the $3$, of which you have two.
- You can use addition ($x+y$), subtraction ($x-y$), division ($frac{x}{y}$), multiplication ($xtimes y$), exponentiation ($x^y$) and roots ($sqrt[leftroot{-2}uproot{2}x]{y}$).
- You can combine numbers like $1$ and $3$ to $13$ etc.
- You must use all numbers.
calculation-puzzle formation-of-numbers
New contributor
$endgroup$
add a comment |
$begingroup$
Create all the numbers from $1$ to $100$ using the numbers $1$,$3$,$3$, and $6$.
- You can only use each number once, except for the $3$, of which you have two.
- You can use addition ($x+y$), subtraction ($x-y$), division ($frac{x}{y}$), multiplication ($xtimes y$), exponentiation ($x^y$) and roots ($sqrt[leftroot{-2}uproot{2}x]{y}$).
- You can combine numbers like $1$ and $3$ to $13$ etc.
- You must use all numbers.
calculation-puzzle formation-of-numbers
New contributor
$endgroup$
2
$begingroup$
Can we combine the results of operations? For example, is $(1+3) | 36 = 436$ (where | indicates concatenation)
$endgroup$
– Hugh
5 hours ago
1
$begingroup$
If we need to take a square root, is the two implied?
$endgroup$
– Hugh
5 hours ago
1
$begingroup$
can we use factorial?
$endgroup$
– Omega Krypton
4 hours ago
2
$begingroup$
Factorials are most likely out, but what about parentheses, unary minus (like starting with -1) and decimal points?
$endgroup$
– Bass
3 hours ago
$begingroup$
If decimal is allowed then round would probably valid too?
$endgroup$
– Mukyuu
3 mins ago
add a comment |
$begingroup$
Create all the numbers from $1$ to $100$ using the numbers $1$,$3$,$3$, and $6$.
- You can only use each number once, except for the $3$, of which you have two.
- You can use addition ($x+y$), subtraction ($x-y$), division ($frac{x}{y}$), multiplication ($xtimes y$), exponentiation ($x^y$) and roots ($sqrt[leftroot{-2}uproot{2}x]{y}$).
- You can combine numbers like $1$ and $3$ to $13$ etc.
- You must use all numbers.
calculation-puzzle formation-of-numbers
New contributor
$endgroup$
Create all the numbers from $1$ to $100$ using the numbers $1$,$3$,$3$, and $6$.
- You can only use each number once, except for the $3$, of which you have two.
- You can use addition ($x+y$), subtraction ($x-y$), division ($frac{x}{y}$), multiplication ($xtimes y$), exponentiation ($x^y$) and roots ($sqrt[leftroot{-2}uproot{2}x]{y}$).
- You can combine numbers like $1$ and $3$ to $13$ etc.
- You must use all numbers.
calculation-puzzle formation-of-numbers
calculation-puzzle formation-of-numbers
New contributor
New contributor
edited 4 hours ago
Hugh
1,4861617
1,4861617
New contributor
asked 5 hours ago
Michał UraszewskiMichał Uraszewski
112
112
New contributor
New contributor
2
$begingroup$
Can we combine the results of operations? For example, is $(1+3) | 36 = 436$ (where | indicates concatenation)
$endgroup$
– Hugh
5 hours ago
1
$begingroup$
If we need to take a square root, is the two implied?
$endgroup$
– Hugh
5 hours ago
1
$begingroup$
can we use factorial?
$endgroup$
– Omega Krypton
4 hours ago
2
$begingroup$
Factorials are most likely out, but what about parentheses, unary minus (like starting with -1) and decimal points?
$endgroup$
– Bass
3 hours ago
$begingroup$
If decimal is allowed then round would probably valid too?
$endgroup$
– Mukyuu
3 mins ago
add a comment |
2
$begingroup$
Can we combine the results of operations? For example, is $(1+3) | 36 = 436$ (where | indicates concatenation)
$endgroup$
– Hugh
5 hours ago
1
$begingroup$
If we need to take a square root, is the two implied?
$endgroup$
– Hugh
5 hours ago
1
$begingroup$
can we use factorial?
$endgroup$
– Omega Krypton
4 hours ago
2
$begingroup$
Factorials are most likely out, but what about parentheses, unary minus (like starting with -1) and decimal points?
$endgroup$
– Bass
3 hours ago
$begingroup$
If decimal is allowed then round would probably valid too?
$endgroup$
– Mukyuu
3 mins ago
2
2
$begingroup$
Can we combine the results of operations? For example, is $(1+3) | 36 = 436$ (where | indicates concatenation)
$endgroup$
– Hugh
5 hours ago
$begingroup$
Can we combine the results of operations? For example, is $(1+3) | 36 = 436$ (where | indicates concatenation)
$endgroup$
– Hugh
5 hours ago
1
1
$begingroup$
If we need to take a square root, is the two implied?
$endgroup$
– Hugh
5 hours ago
$begingroup$
If we need to take a square root, is the two implied?
$endgroup$
– Hugh
5 hours ago
1
1
$begingroup$
can we use factorial?
$endgroup$
– Omega Krypton
4 hours ago
$begingroup$
can we use factorial?
$endgroup$
– Omega Krypton
4 hours ago
2
2
$begingroup$
Factorials are most likely out, but what about parentheses, unary minus (like starting with -1) and decimal points?
$endgroup$
– Bass
3 hours ago
$begingroup$
Factorials are most likely out, but what about parentheses, unary minus (like starting with -1) and decimal points?
$endgroup$
– Bass
3 hours ago
$begingroup$
If decimal is allowed then round would probably valid too?
$endgroup$
– Mukyuu
3 mins ago
$begingroup$
If decimal is allowed then round would probably valid too?
$endgroup$
– Mukyuu
3 mins ago
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
These get harder with larger numbers, but here are the first couple with the digits in order:
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1^3 +3/6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1^3 + 3+6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 1 - 3 + sqrt3^6$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ -1 + 3 + sqrt3^6$
30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50 (getting much harder now, so I'll just press the submit button and let others continue)
41: $ $
42: $ (1+3+3)times 6$
43: $ $
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ $
49: $13+36$
50: $ $
$endgroup$
add a comment |
$begingroup$
Here are some:
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
22: (omega kyrpton did some) $3 * 6 + 3 + 1$
23: $3 ^ 3 - 6 * 1$
24: $3 ^ 3 - (6 - 1)$
I will do more later.
$endgroup$
add a comment |
$begingroup$
Adding some more...
1-20: (Credits to @YoutRied)
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
21-29
21: $3 * 6 + 3 * 1$
22: $( 1 + 3 ) ! - ( 6 / 3 )$
23: $( 1 + 3 ) ! - ( 6 - 3 )$
24: $( 6 - 3 / 3 - 1 ) !$
25: $1 * 3 ^ 3 - floor(sqrt{6})$
26: $( 6 - 3 ) ^ 3 - 1$
27: $( 6 - 3 ) ^ 3 * 1$
28: $( 6 - 3 ) ^ 3 + 1$
29: $31 - 6 / 3$
41-50: (Credits to @Bass for 42, 45, 49)
41: $ (-1+3!)+36 $
42: $ (1+3+3)times 6$
43: $ 31 + 6 * ceil(sqrt{3})$
44: $floor( 1 * 3 * sqrt{6 ^ 3}) $
45: $ 13times3+6$
46: $ ceil(sqrt{6 ^ 3} + 31)$
47: $ floor(sqrt{sqrt{sqrt{sqrt{sqrt{31!}}}}})+36$
48: $6 * ( 3 * 3 - 1 )$
49: $13+36$
50: $ (6+1)^2 + 3 - 3$
51-60:
51: $( 3 * 6 - 1 ) * 3$
52: $( 3 + 3 + 1 ) * ceil(sqrt{6})$
53: $-1+( 3 * 3 * 6 )$
54: $ 1*3 * 3 * 6 $
55: $1+3*3*6$
56: $61-3!+floor(sqrt{3})$
57: $1*63-3!$
58: $1+63-3!$
59: $floor(sqrt{sqrt{sqrt{sqrt{sqrt{6^{(3-1)}}}}}}*3)$
60: $(1+3*3)*6$
61-70:
61: $63-3+1$
62: $63+1-ceil(sqrt{3})$
63: $63-floor(sqrt{3})+1$
64: $63+ceil(sqrt{3})-1$
65: $63+3-1$
66: $63+3*1$
67: $63+3+1$
68: $61+3!+floor(sqrt{3})$
69: $61+3!+ceil(sqrt{3})$
70: $61+3*3$
71-75
71: $(3+1)!*3-floor(sqrt{sqrt{6}})$
72: $(3+1)*3*6$
73: $(3+1)!*3+floor(sqrt{sqrt{6}})$
74: $(3+1)!*3+floor(sqrt{6})$
75: $(3+1)!*3+ceil(sqrt{6})$
$endgroup$
$begingroup$
Who said you could use factorials?
$endgroup$
– Yout Ried
3 hours ago
$begingroup$
What are number 23 (plus you probably can't use factorials and 24? I don't get them.
$endgroup$
– Yout Ried
2 hours ago
$begingroup$
Oops forgot a ")" and maybe you're missing a factorial for number 24
$endgroup$
– Yout Ried
2 hours ago
add a comment |
$begingroup$
Alrighty, I'm piggybacking off of @OmegaKrypton else and adding some of my own.
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1^3 +3/6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1^3 + 3+6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
! 21: $ 1 * 3^3 - 6 $
! 22: $ 13 + 3 + 6$
! 23: $ -13+36 $
! 24: $ (1+3)timessqrt{36}$
! 25: $ 3*6+3!-1$ or $ (6-1)^(3!/3)
>! 26: $ -1+33-6$
>! 27: $ 1*33-6 $
>! 28: $ 1+33-6$
>! 29: $ 36-3!-1$
>! 30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50
41: $ $
42: $ (1+3+3)times 6$
43: $ 3^3+16$
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ 16*(3!-3)$
49: $13+36$
50: $ 63-13$
I added a few. It's getting late here; will come back tomorrow.
$endgroup$
add a comment |
$begingroup$
Partial answer 1-50 (w/e 41,46,47):
$1= 1+3+3-6$
$2= 1 + (frac{6}{(3+3)})$
$3= 1^3+(frac{6}{3})$
$4= (frac{6}{3})+3-1$
$5= (frac{6}{3})+3^1$
$6= 6^1+3-3$
$7= 6+1-3+3$
$8= 6 + 3 - 1^3$
$9= 1^3 * (3+6)$
$10= 1^3 +3+6$
$11= 13 - (frac{6}{3})$
$12= 6+3+3^1$
$13= 6+3+3+1$
$14= 6*3 - 3 - 1$
$15= 6*3 - 3^1$
$16= 16 + 3 - 3$
$17= 16 + (frac{3}{3})$
$18= (frac{6*3}{1^3})$
$19= 6*3+1^3$
$20= 6*3+3-1$
$21= 6*3+3^1$
$22= 6*3+3+1$
$23= 36-13$
$24= 6*(3+1^3)$
$25= 16+(3*3)$
$26= 13*(frac{6}{3})$
$27= 33-6^1$
$28= 33-6+1$
$29= 31-(frac{6}{3})$
$30= 6*(3+3-1)$
$31= 13+3*6$
$32= 3^3+6-1$
$33= (frac{33}{1^6})$
$34= 33+1^6$
$35= (3+3)*6-1$
$36= (3+3)^1*6$
$37= 1+(3+3)*6$
$38= 33+6-1$
$39= 33+6^1$
$40= 1+33+6$
$41= $
$42= (1+3+3)*6$
$43= 16+3^3$
$44= (sqrt(6^3))*3^1$
$45= 3*3*(6-1)$
$46= $
$47= $
$48= ((3*3)-1)*6$
$49= 16+33$
$50= 63-13$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "559"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Michał Uraszewski is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f78918%2fcreate-all-numbers-from-1-100-using-1-3-3-6%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
These get harder with larger numbers, but here are the first couple with the digits in order:
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1^3 +3/6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1^3 + 3+6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 1 - 3 + sqrt3^6$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ -1 + 3 + sqrt3^6$
30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50 (getting much harder now, so I'll just press the submit button and let others continue)
41: $ $
42: $ (1+3+3)times 6$
43: $ $
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ $
49: $13+36$
50: $ $
$endgroup$
add a comment |
$begingroup$
These get harder with larger numbers, but here are the first couple with the digits in order:
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1^3 +3/6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1^3 + 3+6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 1 - 3 + sqrt3^6$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ -1 + 3 + sqrt3^6$
30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50 (getting much harder now, so I'll just press the submit button and let others continue)
41: $ $
42: $ (1+3+3)times 6$
43: $ $
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ $
49: $13+36$
50: $ $
$endgroup$
add a comment |
$begingroup$
These get harder with larger numbers, but here are the first couple with the digits in order:
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1^3 +3/6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1^3 + 3+6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 1 - 3 + sqrt3^6$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ -1 + 3 + sqrt3^6$
30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50 (getting much harder now, so I'll just press the submit button and let others continue)
41: $ $
42: $ (1+3+3)times 6$
43: $ $
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ $
49: $13+36$
50: $ $
$endgroup$
These get harder with larger numbers, but here are the first couple with the digits in order:
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1^3 +3/6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1^3 + 3+6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 1 - 3 + sqrt3^6$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ -1 + 3 + sqrt3^6$
30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50 (getting much harder now, so I'll just press the submit button and let others continue)
41: $ $
42: $ (1+3+3)times 6$
43: $ $
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ $
49: $13+36$
50: $ $
edited 27 mins ago
answered 2 hours ago
BassBass
28.7k470176
28.7k470176
add a comment |
add a comment |
$begingroup$
Here are some:
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
22: (omega kyrpton did some) $3 * 6 + 3 + 1$
23: $3 ^ 3 - 6 * 1$
24: $3 ^ 3 - (6 - 1)$
I will do more later.
$endgroup$
add a comment |
$begingroup$
Here are some:
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
22: (omega kyrpton did some) $3 * 6 + 3 + 1$
23: $3 ^ 3 - 6 * 1$
24: $3 ^ 3 - (6 - 1)$
I will do more later.
$endgroup$
add a comment |
$begingroup$
Here are some:
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
22: (omega kyrpton did some) $3 * 6 + 3 + 1$
23: $3 ^ 3 - 6 * 1$
24: $3 ^ 3 - (6 - 1)$
I will do more later.
$endgroup$
Here are some:
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
22: (omega kyrpton did some) $3 * 6 + 3 + 1$
23: $3 ^ 3 - 6 * 1$
24: $3 ^ 3 - (6 - 1)$
I will do more later.
edited 2 hours ago
answered 5 hours ago
Yout RiedYout Ried
769119
769119
add a comment |
add a comment |
$begingroup$
Adding some more...
1-20: (Credits to @YoutRied)
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
21-29
21: $3 * 6 + 3 * 1$
22: $( 1 + 3 ) ! - ( 6 / 3 )$
23: $( 1 + 3 ) ! - ( 6 - 3 )$
24: $( 6 - 3 / 3 - 1 ) !$
25: $1 * 3 ^ 3 - floor(sqrt{6})$
26: $( 6 - 3 ) ^ 3 - 1$
27: $( 6 - 3 ) ^ 3 * 1$
28: $( 6 - 3 ) ^ 3 + 1$
29: $31 - 6 / 3$
41-50: (Credits to @Bass for 42, 45, 49)
41: $ (-1+3!)+36 $
42: $ (1+3+3)times 6$
43: $ 31 + 6 * ceil(sqrt{3})$
44: $floor( 1 * 3 * sqrt{6 ^ 3}) $
45: $ 13times3+6$
46: $ ceil(sqrt{6 ^ 3} + 31)$
47: $ floor(sqrt{sqrt{sqrt{sqrt{sqrt{31!}}}}})+36$
48: $6 * ( 3 * 3 - 1 )$
49: $13+36$
50: $ (6+1)^2 + 3 - 3$
51-60:
51: $( 3 * 6 - 1 ) * 3$
52: $( 3 + 3 + 1 ) * ceil(sqrt{6})$
53: $-1+( 3 * 3 * 6 )$
54: $ 1*3 * 3 * 6 $
55: $1+3*3*6$
56: $61-3!+floor(sqrt{3})$
57: $1*63-3!$
58: $1+63-3!$
59: $floor(sqrt{sqrt{sqrt{sqrt{sqrt{6^{(3-1)}}}}}}*3)$
60: $(1+3*3)*6$
61-70:
61: $63-3+1$
62: $63+1-ceil(sqrt{3})$
63: $63-floor(sqrt{3})+1$
64: $63+ceil(sqrt{3})-1$
65: $63+3-1$
66: $63+3*1$
67: $63+3+1$
68: $61+3!+floor(sqrt{3})$
69: $61+3!+ceil(sqrt{3})$
70: $61+3*3$
71-75
71: $(3+1)!*3-floor(sqrt{sqrt{6}})$
72: $(3+1)*3*6$
73: $(3+1)!*3+floor(sqrt{sqrt{6}})$
74: $(3+1)!*3+floor(sqrt{6})$
75: $(3+1)!*3+ceil(sqrt{6})$
$endgroup$
$begingroup$
Who said you could use factorials?
$endgroup$
– Yout Ried
3 hours ago
$begingroup$
What are number 23 (plus you probably can't use factorials and 24? I don't get them.
$endgroup$
– Yout Ried
2 hours ago
$begingroup$
Oops forgot a ")" and maybe you're missing a factorial for number 24
$endgroup$
– Yout Ried
2 hours ago
add a comment |
$begingroup$
Adding some more...
1-20: (Credits to @YoutRied)
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
21-29
21: $3 * 6 + 3 * 1$
22: $( 1 + 3 ) ! - ( 6 / 3 )$
23: $( 1 + 3 ) ! - ( 6 - 3 )$
24: $( 6 - 3 / 3 - 1 ) !$
25: $1 * 3 ^ 3 - floor(sqrt{6})$
26: $( 6 - 3 ) ^ 3 - 1$
27: $( 6 - 3 ) ^ 3 * 1$
28: $( 6 - 3 ) ^ 3 + 1$
29: $31 - 6 / 3$
41-50: (Credits to @Bass for 42, 45, 49)
41: $ (-1+3!)+36 $
42: $ (1+3+3)times 6$
43: $ 31 + 6 * ceil(sqrt{3})$
44: $floor( 1 * 3 * sqrt{6 ^ 3}) $
45: $ 13times3+6$
46: $ ceil(sqrt{6 ^ 3} + 31)$
47: $ floor(sqrt{sqrt{sqrt{sqrt{sqrt{31!}}}}})+36$
48: $6 * ( 3 * 3 - 1 )$
49: $13+36$
50: $ (6+1)^2 + 3 - 3$
51-60:
51: $( 3 * 6 - 1 ) * 3$
52: $( 3 + 3 + 1 ) * ceil(sqrt{6})$
53: $-1+( 3 * 3 * 6 )$
54: $ 1*3 * 3 * 6 $
55: $1+3*3*6$
56: $61-3!+floor(sqrt{3})$
57: $1*63-3!$
58: $1+63-3!$
59: $floor(sqrt{sqrt{sqrt{sqrt{sqrt{6^{(3-1)}}}}}}*3)$
60: $(1+3*3)*6$
61-70:
61: $63-3+1$
62: $63+1-ceil(sqrt{3})$
63: $63-floor(sqrt{3})+1$
64: $63+ceil(sqrt{3})-1$
65: $63+3-1$
66: $63+3*1$
67: $63+3+1$
68: $61+3!+floor(sqrt{3})$
69: $61+3!+ceil(sqrt{3})$
70: $61+3*3$
71-75
71: $(3+1)!*3-floor(sqrt{sqrt{6}})$
72: $(3+1)*3*6$
73: $(3+1)!*3+floor(sqrt{sqrt{6}})$
74: $(3+1)!*3+floor(sqrt{6})$
75: $(3+1)!*3+ceil(sqrt{6})$
$endgroup$
$begingroup$
Who said you could use factorials?
$endgroup$
– Yout Ried
3 hours ago
$begingroup$
What are number 23 (plus you probably can't use factorials and 24? I don't get them.
$endgroup$
– Yout Ried
2 hours ago
$begingroup$
Oops forgot a ")" and maybe you're missing a factorial for number 24
$endgroup$
– Yout Ried
2 hours ago
add a comment |
$begingroup$
Adding some more...
1-20: (Credits to @YoutRied)
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
21-29
21: $3 * 6 + 3 * 1$
22: $( 1 + 3 ) ! - ( 6 / 3 )$
23: $( 1 + 3 ) ! - ( 6 - 3 )$
24: $( 6 - 3 / 3 - 1 ) !$
25: $1 * 3 ^ 3 - floor(sqrt{6})$
26: $( 6 - 3 ) ^ 3 - 1$
27: $( 6 - 3 ) ^ 3 * 1$
28: $( 6 - 3 ) ^ 3 + 1$
29: $31 - 6 / 3$
41-50: (Credits to @Bass for 42, 45, 49)
41: $ (-1+3!)+36 $
42: $ (1+3+3)times 6$
43: $ 31 + 6 * ceil(sqrt{3})$
44: $floor( 1 * 3 * sqrt{6 ^ 3}) $
45: $ 13times3+6$
46: $ ceil(sqrt{6 ^ 3} + 31)$
47: $ floor(sqrt{sqrt{sqrt{sqrt{sqrt{31!}}}}})+36$
48: $6 * ( 3 * 3 - 1 )$
49: $13+36$
50: $ (6+1)^2 + 3 - 3$
51-60:
51: $( 3 * 6 - 1 ) * 3$
52: $( 3 + 3 + 1 ) * ceil(sqrt{6})$
53: $-1+( 3 * 3 * 6 )$
54: $ 1*3 * 3 * 6 $
55: $1+3*3*6$
56: $61-3!+floor(sqrt{3})$
57: $1*63-3!$
58: $1+63-3!$
59: $floor(sqrt{sqrt{sqrt{sqrt{sqrt{6^{(3-1)}}}}}}*3)$
60: $(1+3*3)*6$
61-70:
61: $63-3+1$
62: $63+1-ceil(sqrt{3})$
63: $63-floor(sqrt{3})+1$
64: $63+ceil(sqrt{3})-1$
65: $63+3-1$
66: $63+3*1$
67: $63+3+1$
68: $61+3!+floor(sqrt{3})$
69: $61+3!+ceil(sqrt{3})$
70: $61+3*3$
71-75
71: $(3+1)!*3-floor(sqrt{sqrt{6}})$
72: $(3+1)*3*6$
73: $(3+1)!*3+floor(sqrt{sqrt{6}})$
74: $(3+1)!*3+floor(sqrt{6})$
75: $(3+1)!*3+ceil(sqrt{6})$
$endgroup$
Adding some more...
1-20: (Credits to @YoutRied)
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
21-29
21: $3 * 6 + 3 * 1$
22: $( 1 + 3 ) ! - ( 6 / 3 )$
23: $( 1 + 3 ) ! - ( 6 - 3 )$
24: $( 6 - 3 / 3 - 1 ) !$
25: $1 * 3 ^ 3 - floor(sqrt{6})$
26: $( 6 - 3 ) ^ 3 - 1$
27: $( 6 - 3 ) ^ 3 * 1$
28: $( 6 - 3 ) ^ 3 + 1$
29: $31 - 6 / 3$
41-50: (Credits to @Bass for 42, 45, 49)
41: $ (-1+3!)+36 $
42: $ (1+3+3)times 6$
43: $ 31 + 6 * ceil(sqrt{3})$
44: $floor( 1 * 3 * sqrt{6 ^ 3}) $
45: $ 13times3+6$
46: $ ceil(sqrt{6 ^ 3} + 31)$
47: $ floor(sqrt{sqrt{sqrt{sqrt{sqrt{31!}}}}})+36$
48: $6 * ( 3 * 3 - 1 )$
49: $13+36$
50: $ (6+1)^2 + 3 - 3$
51-60:
51: $( 3 * 6 - 1 ) * 3$
52: $( 3 + 3 + 1 ) * ceil(sqrt{6})$
53: $-1+( 3 * 3 * 6 )$
54: $ 1*3 * 3 * 6 $
55: $1+3*3*6$
56: $61-3!+floor(sqrt{3})$
57: $1*63-3!$
58: $1+63-3!$
59: $floor(sqrt{sqrt{sqrt{sqrt{sqrt{6^{(3-1)}}}}}}*3)$
60: $(1+3*3)*6$
61-70:
61: $63-3+1$
62: $63+1-ceil(sqrt{3})$
63: $63-floor(sqrt{3})+1$
64: $63+ceil(sqrt{3})-1$
65: $63+3-1$
66: $63+3*1$
67: $63+3+1$
68: $61+3!+floor(sqrt{3})$
69: $61+3!+ceil(sqrt{3})$
70: $61+3*3$
71-75
71: $(3+1)!*3-floor(sqrt{sqrt{6}})$
72: $(3+1)*3*6$
73: $(3+1)!*3+floor(sqrt{sqrt{6}})$
74: $(3+1)!*3+floor(sqrt{6})$
75: $(3+1)!*3+ceil(sqrt{6})$
edited 5 mins ago
answered 4 hours ago
Omega KryptonOmega Krypton
2,9851232
2,9851232
$begingroup$
Who said you could use factorials?
$endgroup$
– Yout Ried
3 hours ago
$begingroup$
What are number 23 (plus you probably can't use factorials and 24? I don't get them.
$endgroup$
– Yout Ried
2 hours ago
$begingroup$
Oops forgot a ")" and maybe you're missing a factorial for number 24
$endgroup$
– Yout Ried
2 hours ago
add a comment |
$begingroup$
Who said you could use factorials?
$endgroup$
– Yout Ried
3 hours ago
$begingroup$
What are number 23 (plus you probably can't use factorials and 24? I don't get them.
$endgroup$
– Yout Ried
2 hours ago
$begingroup$
Oops forgot a ")" and maybe you're missing a factorial for number 24
$endgroup$
– Yout Ried
2 hours ago
$begingroup$
Who said you could use factorials?
$endgroup$
– Yout Ried
3 hours ago
$begingroup$
Who said you could use factorials?
$endgroup$
– Yout Ried
3 hours ago
$begingroup$
What are number 23 (plus you probably can't use factorials and 24? I don't get them.
$endgroup$
– Yout Ried
2 hours ago
$begingroup$
What are number 23 (plus you probably can't use factorials and 24? I don't get them.
$endgroup$
– Yout Ried
2 hours ago
$begingroup$
Oops forgot a ")" and maybe you're missing a factorial for number 24
$endgroup$
– Yout Ried
2 hours ago
$begingroup$
Oops forgot a ")" and maybe you're missing a factorial for number 24
$endgroup$
– Yout Ried
2 hours ago
add a comment |
$begingroup$
Alrighty, I'm piggybacking off of @OmegaKrypton else and adding some of my own.
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1^3 +3/6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1^3 + 3+6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
! 21: $ 1 * 3^3 - 6 $
! 22: $ 13 + 3 + 6$
! 23: $ -13+36 $
! 24: $ (1+3)timessqrt{36}$
! 25: $ 3*6+3!-1$ or $ (6-1)^(3!/3)
>! 26: $ -1+33-6$
>! 27: $ 1*33-6 $
>! 28: $ 1+33-6$
>! 29: $ 36-3!-1$
>! 30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50
41: $ $
42: $ (1+3+3)times 6$
43: $ 3^3+16$
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ 16*(3!-3)$
49: $13+36$
50: $ 63-13$
I added a few. It's getting late here; will come back tomorrow.
$endgroup$
add a comment |
$begingroup$
Alrighty, I'm piggybacking off of @OmegaKrypton else and adding some of my own.
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1^3 +3/6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1^3 + 3+6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
! 21: $ 1 * 3^3 - 6 $
! 22: $ 13 + 3 + 6$
! 23: $ -13+36 $
! 24: $ (1+3)timessqrt{36}$
! 25: $ 3*6+3!-1$ or $ (6-1)^(3!/3)
>! 26: $ -1+33-6$
>! 27: $ 1*33-6 $
>! 28: $ 1+33-6$
>! 29: $ 36-3!-1$
>! 30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50
41: $ $
42: $ (1+3+3)times 6$
43: $ 3^3+16$
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ 16*(3!-3)$
49: $13+36$
50: $ 63-13$
I added a few. It's getting late here; will come back tomorrow.
$endgroup$
add a comment |
$begingroup$
Alrighty, I'm piggybacking off of @OmegaKrypton else and adding some of my own.
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1^3 +3/6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1^3 + 3+6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
! 21: $ 1 * 3^3 - 6 $
! 22: $ 13 + 3 + 6$
! 23: $ -13+36 $
! 24: $ (1+3)timessqrt{36}$
! 25: $ 3*6+3!-1$ or $ (6-1)^(3!/3)
>! 26: $ -1+33-6$
>! 27: $ 1*33-6 $
>! 28: $ 1+33-6$
>! 29: $ 36-3!-1$
>! 30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50
41: $ $
42: $ (1+3+3)times 6$
43: $ 3^3+16$
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ 16*(3!-3)$
49: $13+36$
50: $ 63-13$
I added a few. It's getting late here; will come back tomorrow.
$endgroup$
Alrighty, I'm piggybacking off of @OmegaKrypton else and adding some of my own.
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1^3 +3/6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1^3 + 3+6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
! 21: $ 1 * 3^3 - 6 $
! 22: $ 13 + 3 + 6$
! 23: $ -13+36 $
! 24: $ (1+3)timessqrt{36}$
! 25: $ 3*6+3!-1$ or $ (6-1)^(3!/3)
>! 26: $ -1+33-6$
>! 27: $ 1*33-6 $
>! 28: $ 1+33-6$
>! 29: $ 36-3!-1$
>! 30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50
41: $ $
42: $ (1+3+3)times 6$
43: $ 3^3+16$
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ 16*(3!-3)$
49: $13+36$
50: $ 63-13$
I added a few. It's getting late here; will come back tomorrow.
answered 36 mins ago
Brandon_JBrandon_J
1,16326
1,16326
add a comment |
add a comment |
$begingroup$
Partial answer 1-50 (w/e 41,46,47):
$1= 1+3+3-6$
$2= 1 + (frac{6}{(3+3)})$
$3= 1^3+(frac{6}{3})$
$4= (frac{6}{3})+3-1$
$5= (frac{6}{3})+3^1$
$6= 6^1+3-3$
$7= 6+1-3+3$
$8= 6 + 3 - 1^3$
$9= 1^3 * (3+6)$
$10= 1^3 +3+6$
$11= 13 - (frac{6}{3})$
$12= 6+3+3^1$
$13= 6+3+3+1$
$14= 6*3 - 3 - 1$
$15= 6*3 - 3^1$
$16= 16 + 3 - 3$
$17= 16 + (frac{3}{3})$
$18= (frac{6*3}{1^3})$
$19= 6*3+1^3$
$20= 6*3+3-1$
$21= 6*3+3^1$
$22= 6*3+3+1$
$23= 36-13$
$24= 6*(3+1^3)$
$25= 16+(3*3)$
$26= 13*(frac{6}{3})$
$27= 33-6^1$
$28= 33-6+1$
$29= 31-(frac{6}{3})$
$30= 6*(3+3-1)$
$31= 13+3*6$
$32= 3^3+6-1$
$33= (frac{33}{1^6})$
$34= 33+1^6$
$35= (3+3)*6-1$
$36= (3+3)^1*6$
$37= 1+(3+3)*6$
$38= 33+6-1$
$39= 33+6^1$
$40= 1+33+6$
$41= $
$42= (1+3+3)*6$
$43= 16+3^3$
$44= (sqrt(6^3))*3^1$
$45= 3*3*(6-1)$
$46= $
$47= $
$48= ((3*3)-1)*6$
$49= 16+33$
$50= 63-13$
$endgroup$
add a comment |
$begingroup$
Partial answer 1-50 (w/e 41,46,47):
$1= 1+3+3-6$
$2= 1 + (frac{6}{(3+3)})$
$3= 1^3+(frac{6}{3})$
$4= (frac{6}{3})+3-1$
$5= (frac{6}{3})+3^1$
$6= 6^1+3-3$
$7= 6+1-3+3$
$8= 6 + 3 - 1^3$
$9= 1^3 * (3+6)$
$10= 1^3 +3+6$
$11= 13 - (frac{6}{3})$
$12= 6+3+3^1$
$13= 6+3+3+1$
$14= 6*3 - 3 - 1$
$15= 6*3 - 3^1$
$16= 16 + 3 - 3$
$17= 16 + (frac{3}{3})$
$18= (frac{6*3}{1^3})$
$19= 6*3+1^3$
$20= 6*3+3-1$
$21= 6*3+3^1$
$22= 6*3+3+1$
$23= 36-13$
$24= 6*(3+1^3)$
$25= 16+(3*3)$
$26= 13*(frac{6}{3})$
$27= 33-6^1$
$28= 33-6+1$
$29= 31-(frac{6}{3})$
$30= 6*(3+3-1)$
$31= 13+3*6$
$32= 3^3+6-1$
$33= (frac{33}{1^6})$
$34= 33+1^6$
$35= (3+3)*6-1$
$36= (3+3)^1*6$
$37= 1+(3+3)*6$
$38= 33+6-1$
$39= 33+6^1$
$40= 1+33+6$
$41= $
$42= (1+3+3)*6$
$43= 16+3^3$
$44= (sqrt(6^3))*3^1$
$45= 3*3*(6-1)$
$46= $
$47= $
$48= ((3*3)-1)*6$
$49= 16+33$
$50= 63-13$
$endgroup$
add a comment |
$begingroup$
Partial answer 1-50 (w/e 41,46,47):
$1= 1+3+3-6$
$2= 1 + (frac{6}{(3+3)})$
$3= 1^3+(frac{6}{3})$
$4= (frac{6}{3})+3-1$
$5= (frac{6}{3})+3^1$
$6= 6^1+3-3$
$7= 6+1-3+3$
$8= 6 + 3 - 1^3$
$9= 1^3 * (3+6)$
$10= 1^3 +3+6$
$11= 13 - (frac{6}{3})$
$12= 6+3+3^1$
$13= 6+3+3+1$
$14= 6*3 - 3 - 1$
$15= 6*3 - 3^1$
$16= 16 + 3 - 3$
$17= 16 + (frac{3}{3})$
$18= (frac{6*3}{1^3})$
$19= 6*3+1^3$
$20= 6*3+3-1$
$21= 6*3+3^1$
$22= 6*3+3+1$
$23= 36-13$
$24= 6*(3+1^3)$
$25= 16+(3*3)$
$26= 13*(frac{6}{3})$
$27= 33-6^1$
$28= 33-6+1$
$29= 31-(frac{6}{3})$
$30= 6*(3+3-1)$
$31= 13+3*6$
$32= 3^3+6-1$
$33= (frac{33}{1^6})$
$34= 33+1^6$
$35= (3+3)*6-1$
$36= (3+3)^1*6$
$37= 1+(3+3)*6$
$38= 33+6-1$
$39= 33+6^1$
$40= 1+33+6$
$41= $
$42= (1+3+3)*6$
$43= 16+3^3$
$44= (sqrt(6^3))*3^1$
$45= 3*3*(6-1)$
$46= $
$47= $
$48= ((3*3)-1)*6$
$49= 16+33$
$50= 63-13$
$endgroup$
Partial answer 1-50 (w/e 41,46,47):
$1= 1+3+3-6$
$2= 1 + (frac{6}{(3+3)})$
$3= 1^3+(frac{6}{3})$
$4= (frac{6}{3})+3-1$
$5= (frac{6}{3})+3^1$
$6= 6^1+3-3$
$7= 6+1-3+3$
$8= 6 + 3 - 1^3$
$9= 1^3 * (3+6)$
$10= 1^3 +3+6$
$11= 13 - (frac{6}{3})$
$12= 6+3+3^1$
$13= 6+3+3+1$
$14= 6*3 - 3 - 1$
$15= 6*3 - 3^1$
$16= 16 + 3 - 3$
$17= 16 + (frac{3}{3})$
$18= (frac{6*3}{1^3})$
$19= 6*3+1^3$
$20= 6*3+3-1$
$21= 6*3+3^1$
$22= 6*3+3+1$
$23= 36-13$
$24= 6*(3+1^3)$
$25= 16+(3*3)$
$26= 13*(frac{6}{3})$
$27= 33-6^1$
$28= 33-6+1$
$29= 31-(frac{6}{3})$
$30= 6*(3+3-1)$
$31= 13+3*6$
$32= 3^3+6-1$
$33= (frac{33}{1^6})$
$34= 33+1^6$
$35= (3+3)*6-1$
$36= (3+3)^1*6$
$37= 1+(3+3)*6$
$38= 33+6-1$
$39= 33+6^1$
$40= 1+33+6$
$41= $
$42= (1+3+3)*6$
$43= 16+3^3$
$44= (sqrt(6^3))*3^1$
$45= 3*3*(6-1)$
$46= $
$47= $
$48= ((3*3)-1)*6$
$49= 16+33$
$50= 63-13$
edited 5 mins ago
answered 33 mins ago
MukyuuMukyuu
340112
340112
add a comment |
add a comment |
Michał Uraszewski is a new contributor. Be nice, and check out our Code of Conduct.
Michał Uraszewski is a new contributor. Be nice, and check out our Code of Conduct.
Michał Uraszewski is a new contributor. Be nice, and check out our Code of Conduct.
Michał Uraszewski is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Puzzling Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f78918%2fcreate-all-numbers-from-1-100-using-1-3-3-6%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Can we combine the results of operations? For example, is $(1+3) | 36 = 436$ (where | indicates concatenation)
$endgroup$
– Hugh
5 hours ago
1
$begingroup$
If we need to take a square root, is the two implied?
$endgroup$
– Hugh
5 hours ago
1
$begingroup$
can we use factorial?
$endgroup$
– Omega Krypton
4 hours ago
2
$begingroup$
Factorials are most likely out, but what about parentheses, unary minus (like starting with -1) and decimal points?
$endgroup$
– Bass
3 hours ago
$begingroup$
If decimal is allowed then round would probably valid too?
$endgroup$
– Mukyuu
3 mins ago