Machine Learning algorithm to get X and Y points ranges values
$begingroup$
I have a dataset that looks like this:
0.8496732 0.035353534 0.875817 0.035353534 0.875817 0.04419192 0.8496732 0.04419192 DATE
0.88071895 0.035353534 0.88235295 0.035353534 0.88235295 0.04419192 0.88071895 0.04419192 (
0.88235295 0.035353534 0.89542484 0.035353534 0.89542484 0.04419192 0.88235295 0.04419192 MM
0.8986928 0.035353534 0.9019608 0.035353534 0.9019608 0.04419192 0.8986928 0.04419192 /
0.9019608 0.035353534 0.9133987 0.035353534 0.9133987 0.04419192 0.9019608 0.04419192 DD
0.9150327 0.035353534 0.9183006 0.035353534 0.9183006 0.04419192 0.9150327 0.04419192 /
0.91993463 0.035353534 0.9428105 0.035353534 0.9428105 0.04419192 0.91993463 0.04419192 YYYY
0.9444444 0.035353534 0.9460784 0.035353534 0.9460784 0.04419192 0.9444444 0.04419192 )
0.85457516 0.045454547 0.86764705 0.045454547 0.86764705 0.055555556 0.85457516 0.055555556 10
0.874183 0.045454547 0.877451 0.045454547 0.877451 0.055555556 0.874183 0.055555556 /
0.88071895 0.045454547 0.8986928 0.045454547 0.8986928 0.055555556 0.88071895 0.055555556 13
0.9019608 0.045454547 0.90522873 0.045454547 0.90522873 0.055555556 0.9019608 0.055555556 /
Each group of these points corresponds to a certain word within a character(s).
What I want to be able to do make these points as inputs so that I would be able to get 10/13/
is there a way to do that for all documents with the same as this one?
machine-learning data-mining
New contributor
$endgroup$
add a comment |
$begingroup$
I have a dataset that looks like this:
0.8496732 0.035353534 0.875817 0.035353534 0.875817 0.04419192 0.8496732 0.04419192 DATE
0.88071895 0.035353534 0.88235295 0.035353534 0.88235295 0.04419192 0.88071895 0.04419192 (
0.88235295 0.035353534 0.89542484 0.035353534 0.89542484 0.04419192 0.88235295 0.04419192 MM
0.8986928 0.035353534 0.9019608 0.035353534 0.9019608 0.04419192 0.8986928 0.04419192 /
0.9019608 0.035353534 0.9133987 0.035353534 0.9133987 0.04419192 0.9019608 0.04419192 DD
0.9150327 0.035353534 0.9183006 0.035353534 0.9183006 0.04419192 0.9150327 0.04419192 /
0.91993463 0.035353534 0.9428105 0.035353534 0.9428105 0.04419192 0.91993463 0.04419192 YYYY
0.9444444 0.035353534 0.9460784 0.035353534 0.9460784 0.04419192 0.9444444 0.04419192 )
0.85457516 0.045454547 0.86764705 0.045454547 0.86764705 0.055555556 0.85457516 0.055555556 10
0.874183 0.045454547 0.877451 0.045454547 0.877451 0.055555556 0.874183 0.055555556 /
0.88071895 0.045454547 0.8986928 0.045454547 0.8986928 0.055555556 0.88071895 0.055555556 13
0.9019608 0.045454547 0.90522873 0.045454547 0.90522873 0.055555556 0.9019608 0.055555556 /
Each group of these points corresponds to a certain word within a character(s).
What I want to be able to do make these points as inputs so that I would be able to get 10/13/
is there a way to do that for all documents with the same as this one?
machine-learning data-mining
New contributor
$endgroup$
add a comment |
$begingroup$
I have a dataset that looks like this:
0.8496732 0.035353534 0.875817 0.035353534 0.875817 0.04419192 0.8496732 0.04419192 DATE
0.88071895 0.035353534 0.88235295 0.035353534 0.88235295 0.04419192 0.88071895 0.04419192 (
0.88235295 0.035353534 0.89542484 0.035353534 0.89542484 0.04419192 0.88235295 0.04419192 MM
0.8986928 0.035353534 0.9019608 0.035353534 0.9019608 0.04419192 0.8986928 0.04419192 /
0.9019608 0.035353534 0.9133987 0.035353534 0.9133987 0.04419192 0.9019608 0.04419192 DD
0.9150327 0.035353534 0.9183006 0.035353534 0.9183006 0.04419192 0.9150327 0.04419192 /
0.91993463 0.035353534 0.9428105 0.035353534 0.9428105 0.04419192 0.91993463 0.04419192 YYYY
0.9444444 0.035353534 0.9460784 0.035353534 0.9460784 0.04419192 0.9444444 0.04419192 )
0.85457516 0.045454547 0.86764705 0.045454547 0.86764705 0.055555556 0.85457516 0.055555556 10
0.874183 0.045454547 0.877451 0.045454547 0.877451 0.055555556 0.874183 0.055555556 /
0.88071895 0.045454547 0.8986928 0.045454547 0.8986928 0.055555556 0.88071895 0.055555556 13
0.9019608 0.045454547 0.90522873 0.045454547 0.90522873 0.055555556 0.9019608 0.055555556 /
Each group of these points corresponds to a certain word within a character(s).
What I want to be able to do make these points as inputs so that I would be able to get 10/13/
is there a way to do that for all documents with the same as this one?
machine-learning data-mining
New contributor
$endgroup$
I have a dataset that looks like this:
0.8496732 0.035353534 0.875817 0.035353534 0.875817 0.04419192 0.8496732 0.04419192 DATE
0.88071895 0.035353534 0.88235295 0.035353534 0.88235295 0.04419192 0.88071895 0.04419192 (
0.88235295 0.035353534 0.89542484 0.035353534 0.89542484 0.04419192 0.88235295 0.04419192 MM
0.8986928 0.035353534 0.9019608 0.035353534 0.9019608 0.04419192 0.8986928 0.04419192 /
0.9019608 0.035353534 0.9133987 0.035353534 0.9133987 0.04419192 0.9019608 0.04419192 DD
0.9150327 0.035353534 0.9183006 0.035353534 0.9183006 0.04419192 0.9150327 0.04419192 /
0.91993463 0.035353534 0.9428105 0.035353534 0.9428105 0.04419192 0.91993463 0.04419192 YYYY
0.9444444 0.035353534 0.9460784 0.035353534 0.9460784 0.04419192 0.9444444 0.04419192 )
0.85457516 0.045454547 0.86764705 0.045454547 0.86764705 0.055555556 0.85457516 0.055555556 10
0.874183 0.045454547 0.877451 0.045454547 0.877451 0.055555556 0.874183 0.055555556 /
0.88071895 0.045454547 0.8986928 0.045454547 0.8986928 0.055555556 0.88071895 0.055555556 13
0.9019608 0.045454547 0.90522873 0.045454547 0.90522873 0.055555556 0.9019608 0.055555556 /
Each group of these points corresponds to a certain word within a character(s).
What I want to be able to do make these points as inputs so that I would be able to get 10/13/
is there a way to do that for all documents with the same as this one?
machine-learning data-mining
machine-learning data-mining
New contributor
New contributor
New contributor
asked 11 mins ago
RektRekt
1
1
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Rekt is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f44671%2fmachine-learning-algorithm-to-get-x-and-y-points-ranges-values%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Rekt is a new contributor. Be nice, and check out our Code of Conduct.
Rekt is a new contributor. Be nice, and check out our Code of Conduct.
Rekt is a new contributor. Be nice, and check out our Code of Conduct.
Rekt is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f44671%2fmachine-learning-algorithm-to-get-x-and-y-points-ranges-values%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown