sklearn predict: IndexingError: ('Too many indexers', 'occurred at index ')
$begingroup$
use_cols = ['FIRST_NAME', 'LAST_NAME', 'PERSON_STATUS', 'DIVISION_NAME',
'PERSON_TYPE', 'JOB_CHANGE', 'JOB_TRANSFER', 'IDENTIFY_DATE',
'SSO', 'USER_ID', 'ASSET_ID', 'ROLE', 'HPA',
'LAST_LOGIN_DATE', 'ASSET_NAME', 'AUDIT_ID',
'REVIEWER_ACTION', 'USER ID', 'LABELED_ROLE', 'REVIEW_ACTION']
prediction_col = ['REVIEW_ACTION']
categorical_features = ['DIVISION_NAME', 'PERSON_TYPE', 'JOB_CHANGE', 'JOB_TRANSFER',
'SSO', 'USER_ID', 'ASSET_ID', 'ROLE', 'HPA', 'LAST_LOGIN_DATE',
'USER ID', 'LABELED_ROLE']
categorical_transformer = Pipeline(steps=[
('si', SimpleImputer(strategy='constant', fill_value='missing')),
('ohe', OneHotEncoder(handle_unknown='ignore'))],remainder='passthrough')
preprocessor = ColumnTransformer(
transformers=[
('cat', categorical_transformer, categorical_features)])
rf = Pipeline(steps=[('preprocessor', preprocessor),
('rfc', RandomForestClassifier(n_estimators=100))
])
So I let several fields
Then I try to run the prediction
df['rf_prediction'] = df[categorical_features].apply(rf.predict)
and get the error:
IndexingError: ('Too many indexers', 'occurred at index DIVISION_NAME')
I suspect that this has something to do with the columns being 'passthrough' but I'm not sure how to resolve it. I don't want to process some of these columns but want them in the results when I write the file so that I can validate the results.
scikit-learn pipelines
New contributor
$endgroup$
add a comment |
$begingroup$
use_cols = ['FIRST_NAME', 'LAST_NAME', 'PERSON_STATUS', 'DIVISION_NAME',
'PERSON_TYPE', 'JOB_CHANGE', 'JOB_TRANSFER', 'IDENTIFY_DATE',
'SSO', 'USER_ID', 'ASSET_ID', 'ROLE', 'HPA',
'LAST_LOGIN_DATE', 'ASSET_NAME', 'AUDIT_ID',
'REVIEWER_ACTION', 'USER ID', 'LABELED_ROLE', 'REVIEW_ACTION']
prediction_col = ['REVIEW_ACTION']
categorical_features = ['DIVISION_NAME', 'PERSON_TYPE', 'JOB_CHANGE', 'JOB_TRANSFER',
'SSO', 'USER_ID', 'ASSET_ID', 'ROLE', 'HPA', 'LAST_LOGIN_DATE',
'USER ID', 'LABELED_ROLE']
categorical_transformer = Pipeline(steps=[
('si', SimpleImputer(strategy='constant', fill_value='missing')),
('ohe', OneHotEncoder(handle_unknown='ignore'))],remainder='passthrough')
preprocessor = ColumnTransformer(
transformers=[
('cat', categorical_transformer, categorical_features)])
rf = Pipeline(steps=[('preprocessor', preprocessor),
('rfc', RandomForestClassifier(n_estimators=100))
])
So I let several fields
Then I try to run the prediction
df['rf_prediction'] = df[categorical_features].apply(rf.predict)
and get the error:
IndexingError: ('Too many indexers', 'occurred at index DIVISION_NAME')
I suspect that this has something to do with the columns being 'passthrough' but I'm not sure how to resolve it. I don't want to process some of these columns but want them in the results when I write the file so that I can validate the results.
scikit-learn pipelines
New contributor
$endgroup$
add a comment |
$begingroup$
use_cols = ['FIRST_NAME', 'LAST_NAME', 'PERSON_STATUS', 'DIVISION_NAME',
'PERSON_TYPE', 'JOB_CHANGE', 'JOB_TRANSFER', 'IDENTIFY_DATE',
'SSO', 'USER_ID', 'ASSET_ID', 'ROLE', 'HPA',
'LAST_LOGIN_DATE', 'ASSET_NAME', 'AUDIT_ID',
'REVIEWER_ACTION', 'USER ID', 'LABELED_ROLE', 'REVIEW_ACTION']
prediction_col = ['REVIEW_ACTION']
categorical_features = ['DIVISION_NAME', 'PERSON_TYPE', 'JOB_CHANGE', 'JOB_TRANSFER',
'SSO', 'USER_ID', 'ASSET_ID', 'ROLE', 'HPA', 'LAST_LOGIN_DATE',
'USER ID', 'LABELED_ROLE']
categorical_transformer = Pipeline(steps=[
('si', SimpleImputer(strategy='constant', fill_value='missing')),
('ohe', OneHotEncoder(handle_unknown='ignore'))],remainder='passthrough')
preprocessor = ColumnTransformer(
transformers=[
('cat', categorical_transformer, categorical_features)])
rf = Pipeline(steps=[('preprocessor', preprocessor),
('rfc', RandomForestClassifier(n_estimators=100))
])
So I let several fields
Then I try to run the prediction
df['rf_prediction'] = df[categorical_features].apply(rf.predict)
and get the error:
IndexingError: ('Too many indexers', 'occurred at index DIVISION_NAME')
I suspect that this has something to do with the columns being 'passthrough' but I'm not sure how to resolve it. I don't want to process some of these columns but want them in the results when I write the file so that I can validate the results.
scikit-learn pipelines
New contributor
$endgroup$
use_cols = ['FIRST_NAME', 'LAST_NAME', 'PERSON_STATUS', 'DIVISION_NAME',
'PERSON_TYPE', 'JOB_CHANGE', 'JOB_TRANSFER', 'IDENTIFY_DATE',
'SSO', 'USER_ID', 'ASSET_ID', 'ROLE', 'HPA',
'LAST_LOGIN_DATE', 'ASSET_NAME', 'AUDIT_ID',
'REVIEWER_ACTION', 'USER ID', 'LABELED_ROLE', 'REVIEW_ACTION']
prediction_col = ['REVIEW_ACTION']
categorical_features = ['DIVISION_NAME', 'PERSON_TYPE', 'JOB_CHANGE', 'JOB_TRANSFER',
'SSO', 'USER_ID', 'ASSET_ID', 'ROLE', 'HPA', 'LAST_LOGIN_DATE',
'USER ID', 'LABELED_ROLE']
categorical_transformer = Pipeline(steps=[
('si', SimpleImputer(strategy='constant', fill_value='missing')),
('ohe', OneHotEncoder(handle_unknown='ignore'))],remainder='passthrough')
preprocessor = ColumnTransformer(
transformers=[
('cat', categorical_transformer, categorical_features)])
rf = Pipeline(steps=[('preprocessor', preprocessor),
('rfc', RandomForestClassifier(n_estimators=100))
])
So I let several fields
Then I try to run the prediction
df['rf_prediction'] = df[categorical_features].apply(rf.predict)
and get the error:
IndexingError: ('Too many indexers', 'occurred at index DIVISION_NAME')
I suspect that this has something to do with the columns being 'passthrough' but I'm not sure how to resolve it. I don't want to process some of these columns but want them in the results when I write the file so that I can validate the results.
scikit-learn pipelines
scikit-learn pipelines
New contributor
New contributor
New contributor
asked 8 mins ago
HarveyHarvey
11
11
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Harvey is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45355%2fsklearn-predict-indexingerror-too-many-indexers-occurred-at-index-name%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Harvey is a new contributor. Be nice, and check out our Code of Conduct.
Harvey is a new contributor. Be nice, and check out our Code of Conduct.
Harvey is a new contributor. Be nice, and check out our Code of Conduct.
Harvey is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45355%2fsklearn-predict-indexingerror-too-many-indexers-occurred-at-index-name%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown