Does the number of classifiers on stacking classifier have to be equal to the number of columns of my...












0












$begingroup$


I'm trying to compete in Kaggle's give some credit contest for classification, the training data set contains 11 features and after my feature engineering I ended having 11 features. I want to use a stacking classifier approach with
mlxtend.classifier.StackingClassifier by using 4 different classifiers, but when trying to predict the test datata set I got the error: ValueError: query data dimension must match training data dimension



Below you will find my code.



Could you please help me to understand the correct usage of a stacking classifiers?



%%time
models=[KNeighborsClassifier(weights='distance'),
GaussianNB(),SGDClassifier(loss='hinge'),XGBClassifier()]
calibrated_models=Calibrated_classifier(models,return_names=False)
meta=LogisticRegression()
stacker=StackingCVClassifier(classifiers=calibrated_models,meta_classifier=meta,use_probas=True).fit(X.values,y.values)


Remark: In my code I just programmed a function to return a list with calibrated classifiers StackingCVClassifier I have checked this is not causing the error



Remark 2: I had already tried to perform a stacker from scratch with the same results so I had thought It was something wrong with my own stacker



from sklearn.linear_model import LogisticRegression
def StackingClassifier(X,y,models,stacker=LogisticRegression(),return_data=True):
names,ls=,
predictions=pd.DataFrame()
for model in models:
names.append(str(model)[:str(model).find('(')])

for i,model in enumerate(models):
model.fit(X,y)
ls=model.predict_proba(X)[:,1]
predictions[names[i]]=ls
if return_data:
return predictions
else:
return stacker.fit(predictions,y)








share









$endgroup$

















    0












    $begingroup$


    I'm trying to compete in Kaggle's give some credit contest for classification, the training data set contains 11 features and after my feature engineering I ended having 11 features. I want to use a stacking classifier approach with
    mlxtend.classifier.StackingClassifier by using 4 different classifiers, but when trying to predict the test datata set I got the error: ValueError: query data dimension must match training data dimension



    Below you will find my code.



    Could you please help me to understand the correct usage of a stacking classifiers?



    %%time
    models=[KNeighborsClassifier(weights='distance'),
    GaussianNB(),SGDClassifier(loss='hinge'),XGBClassifier()]
    calibrated_models=Calibrated_classifier(models,return_names=False)
    meta=LogisticRegression()
    stacker=StackingCVClassifier(classifiers=calibrated_models,meta_classifier=meta,use_probas=True).fit(X.values,y.values)


    Remark: In my code I just programmed a function to return a list with calibrated classifiers StackingCVClassifier I have checked this is not causing the error



    Remark 2: I had already tried to perform a stacker from scratch with the same results so I had thought It was something wrong with my own stacker



    from sklearn.linear_model import LogisticRegression
    def StackingClassifier(X,y,models,stacker=LogisticRegression(),return_data=True):
    names,ls=,
    predictions=pd.DataFrame()
    for model in models:
    names.append(str(model)[:str(model).find('(')])

    for i,model in enumerate(models):
    model.fit(X,y)
    ls=model.predict_proba(X)[:,1]
    predictions[names[i]]=ls
    if return_data:
    return predictions
    else:
    return stacker.fit(predictions,y)








    share









    $endgroup$















      0












      0








      0





      $begingroup$


      I'm trying to compete in Kaggle's give some credit contest for classification, the training data set contains 11 features and after my feature engineering I ended having 11 features. I want to use a stacking classifier approach with
      mlxtend.classifier.StackingClassifier by using 4 different classifiers, but when trying to predict the test datata set I got the error: ValueError: query data dimension must match training data dimension



      Below you will find my code.



      Could you please help me to understand the correct usage of a stacking classifiers?



      %%time
      models=[KNeighborsClassifier(weights='distance'),
      GaussianNB(),SGDClassifier(loss='hinge'),XGBClassifier()]
      calibrated_models=Calibrated_classifier(models,return_names=False)
      meta=LogisticRegression()
      stacker=StackingCVClassifier(classifiers=calibrated_models,meta_classifier=meta,use_probas=True).fit(X.values,y.values)


      Remark: In my code I just programmed a function to return a list with calibrated classifiers StackingCVClassifier I have checked this is not causing the error



      Remark 2: I had already tried to perform a stacker from scratch with the same results so I had thought It was something wrong with my own stacker



      from sklearn.linear_model import LogisticRegression
      def StackingClassifier(X,y,models,stacker=LogisticRegression(),return_data=True):
      names,ls=,
      predictions=pd.DataFrame()
      for model in models:
      names.append(str(model)[:str(model).find('(')])

      for i,model in enumerate(models):
      model.fit(X,y)
      ls=model.predict_proba(X)[:,1]
      predictions[names[i]]=ls
      if return_data:
      return predictions
      else:
      return stacker.fit(predictions,y)








      share









      $endgroup$




      I'm trying to compete in Kaggle's give some credit contest for classification, the training data set contains 11 features and after my feature engineering I ended having 11 features. I want to use a stacking classifier approach with
      mlxtend.classifier.StackingClassifier by using 4 different classifiers, but when trying to predict the test datata set I got the error: ValueError: query data dimension must match training data dimension



      Below you will find my code.



      Could you please help me to understand the correct usage of a stacking classifiers?



      %%time
      models=[KNeighborsClassifier(weights='distance'),
      GaussianNB(),SGDClassifier(loss='hinge'),XGBClassifier()]
      calibrated_models=Calibrated_classifier(models,return_names=False)
      meta=LogisticRegression()
      stacker=StackingCVClassifier(classifiers=calibrated_models,meta_classifier=meta,use_probas=True).fit(X.values,y.values)


      Remark: In my code I just programmed a function to return a list with calibrated classifiers StackingCVClassifier I have checked this is not causing the error



      Remark 2: I had already tried to perform a stacker from scratch with the same results so I had thought It was something wrong with my own stacker



      from sklearn.linear_model import LogisticRegression
      def StackingClassifier(X,y,models,stacker=LogisticRegression(),return_data=True):
      names,ls=,
      predictions=pd.DataFrame()
      for model in models:
      names.append(str(model)[:str(model).find('(')])

      for i,model in enumerate(models):
      model.fit(X,y)
      ls=model.predict_proba(X)[:,1]
      predictions[names[i]]=ls
      if return_data:
      return predictions
      else:
      return stacker.fit(predictions,y)






      machine-learning python scikit-learn ensemble-modeling kaggle





      share












      share










      share



      share










      asked 1 min ago









      MorenoMoreno

      1114




      1114






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "557"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46974%2fdoes-the-number-of-classifiers-on-stacking-classifier-have-to-be-equal-to-the-nu%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46974%2fdoes-the-number-of-classifiers-on-stacking-classifier-have-to-be-equal-to-the-nu%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ponta tanko

          Tantalo (mitologio)

          Erzsébet Schaár