Does the number of classifiers on stacking classifier have to be equal to the number of columns of my...
$begingroup$
I'm trying to compete in Kaggle's give some credit contest for classification, the training data set contains 11 features and after my feature engineering I ended having 11 features. I want to use a stacking classifier approach with
mlxtend.classifier.StackingClassifier by using 4 different classifiers, but when trying to predict the test datata set I got the error: ValueError: query data dimension must match training data dimension
Below you will find my code.
Could you please help me to understand the correct usage of a stacking classifiers?
%%time
models=[KNeighborsClassifier(weights='distance'),
GaussianNB(),SGDClassifier(loss='hinge'),XGBClassifier()]
calibrated_models=Calibrated_classifier(models,return_names=False)
meta=LogisticRegression()
stacker=StackingCVClassifier(classifiers=calibrated_models,meta_classifier=meta,use_probas=True).fit(X.values,y.values)
Remark: In my code I just programmed a function to return a list with calibrated classifiers StackingCVClassifier
I have checked this is not causing the error
Remark 2: I had already tried to perform a stacker from scratch with the same results so I had thought It was something wrong with my own stacker
from sklearn.linear_model import LogisticRegression
def StackingClassifier(X,y,models,stacker=LogisticRegression(),return_data=True):
names,ls=,
predictions=pd.DataFrame()
for model in models:
names.append(str(model)[:str(model).find('(')])
for i,model in enumerate(models):
model.fit(X,y)
ls=model.predict_proba(X)[:,1]
predictions[names[i]]=ls
if return_data:
return predictions
else:
return stacker.fit(predictions,y)
machine-learning python scikit-learn ensemble-modeling kaggle
$endgroup$
add a comment |
$begingroup$
I'm trying to compete in Kaggle's give some credit contest for classification, the training data set contains 11 features and after my feature engineering I ended having 11 features. I want to use a stacking classifier approach with
mlxtend.classifier.StackingClassifier by using 4 different classifiers, but when trying to predict the test datata set I got the error: ValueError: query data dimension must match training data dimension
Below you will find my code.
Could you please help me to understand the correct usage of a stacking classifiers?
%%time
models=[KNeighborsClassifier(weights='distance'),
GaussianNB(),SGDClassifier(loss='hinge'),XGBClassifier()]
calibrated_models=Calibrated_classifier(models,return_names=False)
meta=LogisticRegression()
stacker=StackingCVClassifier(classifiers=calibrated_models,meta_classifier=meta,use_probas=True).fit(X.values,y.values)
Remark: In my code I just programmed a function to return a list with calibrated classifiers StackingCVClassifier
I have checked this is not causing the error
Remark 2: I had already tried to perform a stacker from scratch with the same results so I had thought It was something wrong with my own stacker
from sklearn.linear_model import LogisticRegression
def StackingClassifier(X,y,models,stacker=LogisticRegression(),return_data=True):
names,ls=,
predictions=pd.DataFrame()
for model in models:
names.append(str(model)[:str(model).find('(')])
for i,model in enumerate(models):
model.fit(X,y)
ls=model.predict_proba(X)[:,1]
predictions[names[i]]=ls
if return_data:
return predictions
else:
return stacker.fit(predictions,y)
machine-learning python scikit-learn ensemble-modeling kaggle
$endgroup$
add a comment |
$begingroup$
I'm trying to compete in Kaggle's give some credit contest for classification, the training data set contains 11 features and after my feature engineering I ended having 11 features. I want to use a stacking classifier approach with
mlxtend.classifier.StackingClassifier by using 4 different classifiers, but when trying to predict the test datata set I got the error: ValueError: query data dimension must match training data dimension
Below you will find my code.
Could you please help me to understand the correct usage of a stacking classifiers?
%%time
models=[KNeighborsClassifier(weights='distance'),
GaussianNB(),SGDClassifier(loss='hinge'),XGBClassifier()]
calibrated_models=Calibrated_classifier(models,return_names=False)
meta=LogisticRegression()
stacker=StackingCVClassifier(classifiers=calibrated_models,meta_classifier=meta,use_probas=True).fit(X.values,y.values)
Remark: In my code I just programmed a function to return a list with calibrated classifiers StackingCVClassifier
I have checked this is not causing the error
Remark 2: I had already tried to perform a stacker from scratch with the same results so I had thought It was something wrong with my own stacker
from sklearn.linear_model import LogisticRegression
def StackingClassifier(X,y,models,stacker=LogisticRegression(),return_data=True):
names,ls=,
predictions=pd.DataFrame()
for model in models:
names.append(str(model)[:str(model).find('(')])
for i,model in enumerate(models):
model.fit(X,y)
ls=model.predict_proba(X)[:,1]
predictions[names[i]]=ls
if return_data:
return predictions
else:
return stacker.fit(predictions,y)
machine-learning python scikit-learn ensemble-modeling kaggle
$endgroup$
I'm trying to compete in Kaggle's give some credit contest for classification, the training data set contains 11 features and after my feature engineering I ended having 11 features. I want to use a stacking classifier approach with
mlxtend.classifier.StackingClassifier by using 4 different classifiers, but when trying to predict the test datata set I got the error: ValueError: query data dimension must match training data dimension
Below you will find my code.
Could you please help me to understand the correct usage of a stacking classifiers?
%%time
models=[KNeighborsClassifier(weights='distance'),
GaussianNB(),SGDClassifier(loss='hinge'),XGBClassifier()]
calibrated_models=Calibrated_classifier(models,return_names=False)
meta=LogisticRegression()
stacker=StackingCVClassifier(classifiers=calibrated_models,meta_classifier=meta,use_probas=True).fit(X.values,y.values)
Remark: In my code I just programmed a function to return a list with calibrated classifiers StackingCVClassifier
I have checked this is not causing the error
Remark 2: I had already tried to perform a stacker from scratch with the same results so I had thought It was something wrong with my own stacker
from sklearn.linear_model import LogisticRegression
def StackingClassifier(X,y,models,stacker=LogisticRegression(),return_data=True):
names,ls=,
predictions=pd.DataFrame()
for model in models:
names.append(str(model)[:str(model).find('(')])
for i,model in enumerate(models):
model.fit(X,y)
ls=model.predict_proba(X)[:,1]
predictions[names[i]]=ls
if return_data:
return predictions
else:
return stacker.fit(predictions,y)
machine-learning python scikit-learn ensemble-modeling kaggle
machine-learning python scikit-learn ensemble-modeling kaggle
asked 1 min ago
MorenoMoreno
1114
1114
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46974%2fdoes-the-number-of-classifiers-on-stacking-classifier-have-to-be-equal-to-the-nu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46974%2fdoes-the-number-of-classifiers-on-stacking-classifier-have-to-be-equal-to-the-nu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown