Issue with units for a rocket nozzle throat area problem












2












$begingroup$


I'm working through How to Design, Build, and Test Small Liquid-Fuel Rocket Engines. The guide explains calculating a rocket nozzle throat area using Eq. (7):



$$A_t = frac{w_t}{P_t} sqrt{frac{R T_t}{gamma g_c}} $$



where $w_t$ is flow measured in lb/s, $P_t$ is pressure measured in psi, $R$ is the specific gas constant for gaseous oxygen and hydrocarbon fuel which equals 65 ft-lb/lb R(rankine), $T_t$ is temperature of the chamber measured in rankine, $gamma$ being the ratio of gas specific heats, and the gravitational constant $g_c$ measured in ft/s².



My issue is for the worked out problem on the guide, they give an example here but the answer is in in² instead of ft². I'm not sure how they got inches instead of feet because they didn't do any kind of conversion that I can tell. I tried following the units to see how they got inches but I'm not sure. Shouldn't the answer be in feet, and if not how is it inches?










share|improve this question









New contributor




MAP3 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    You can learn more about MathJax for equations here. I removed the rocketlab tag; after reading that the address and original text was from circa 1967, it doesn't seem to be related to the same company that the tag refers to.
    $endgroup$
    – uhoh
    3 hours ago










  • $begingroup$
    This is really a no-good equation because it has pounds mass (in the flowrate) over pounds force (in the press) outside the radical. It should be the mass flowrate in every engineer's favorite unit, slugs/sec. See Sutton p. 61 pyrobin.com/files/Rocket%20Propulsion%20Elements.pdf
    $endgroup$
    – Organic Marble
    2 hours ago












  • $begingroup$
    @OrganicMarble Are the units for $R$ supposed to be ft-lbf / lbm R?
    $endgroup$
    – Russell Borogove
    2 hours ago












  • $begingroup$
    @RussellBorogove actually no. To be consistent it should be ft-lbf / slug R engineeringtoolbox.com/…
    $endgroup$
    – Organic Marble
    2 hours ago








  • 1




    $begingroup$
    @OrganicMarble Same dimensions, at least.
    $endgroup$
    – Russell Borogove
    2 hours ago
















2












$begingroup$


I'm working through How to Design, Build, and Test Small Liquid-Fuel Rocket Engines. The guide explains calculating a rocket nozzle throat area using Eq. (7):



$$A_t = frac{w_t}{P_t} sqrt{frac{R T_t}{gamma g_c}} $$



where $w_t$ is flow measured in lb/s, $P_t$ is pressure measured in psi, $R$ is the specific gas constant for gaseous oxygen and hydrocarbon fuel which equals 65 ft-lb/lb R(rankine), $T_t$ is temperature of the chamber measured in rankine, $gamma$ being the ratio of gas specific heats, and the gravitational constant $g_c$ measured in ft/s².



My issue is for the worked out problem on the guide, they give an example here but the answer is in in² instead of ft². I'm not sure how they got inches instead of feet because they didn't do any kind of conversion that I can tell. I tried following the units to see how they got inches but I'm not sure. Shouldn't the answer be in feet, and if not how is it inches?










share|improve this question









New contributor




MAP3 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    You can learn more about MathJax for equations here. I removed the rocketlab tag; after reading that the address and original text was from circa 1967, it doesn't seem to be related to the same company that the tag refers to.
    $endgroup$
    – uhoh
    3 hours ago










  • $begingroup$
    This is really a no-good equation because it has pounds mass (in the flowrate) over pounds force (in the press) outside the radical. It should be the mass flowrate in every engineer's favorite unit, slugs/sec. See Sutton p. 61 pyrobin.com/files/Rocket%20Propulsion%20Elements.pdf
    $endgroup$
    – Organic Marble
    2 hours ago












  • $begingroup$
    @OrganicMarble Are the units for $R$ supposed to be ft-lbf / lbm R?
    $endgroup$
    – Russell Borogove
    2 hours ago












  • $begingroup$
    @RussellBorogove actually no. To be consistent it should be ft-lbf / slug R engineeringtoolbox.com/…
    $endgroup$
    – Organic Marble
    2 hours ago








  • 1




    $begingroup$
    @OrganicMarble Same dimensions, at least.
    $endgroup$
    – Russell Borogove
    2 hours ago














2












2








2





$begingroup$


I'm working through How to Design, Build, and Test Small Liquid-Fuel Rocket Engines. The guide explains calculating a rocket nozzle throat area using Eq. (7):



$$A_t = frac{w_t}{P_t} sqrt{frac{R T_t}{gamma g_c}} $$



where $w_t$ is flow measured in lb/s, $P_t$ is pressure measured in psi, $R$ is the specific gas constant for gaseous oxygen and hydrocarbon fuel which equals 65 ft-lb/lb R(rankine), $T_t$ is temperature of the chamber measured in rankine, $gamma$ being the ratio of gas specific heats, and the gravitational constant $g_c$ measured in ft/s².



My issue is for the worked out problem on the guide, they give an example here but the answer is in in² instead of ft². I'm not sure how they got inches instead of feet because they didn't do any kind of conversion that I can tell. I tried following the units to see how they got inches but I'm not sure. Shouldn't the answer be in feet, and if not how is it inches?










share|improve this question









New contributor




MAP3 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I'm working through How to Design, Build, and Test Small Liquid-Fuel Rocket Engines. The guide explains calculating a rocket nozzle throat area using Eq. (7):



$$A_t = frac{w_t}{P_t} sqrt{frac{R T_t}{gamma g_c}} $$



where $w_t$ is flow measured in lb/s, $P_t$ is pressure measured in psi, $R$ is the specific gas constant for gaseous oxygen and hydrocarbon fuel which equals 65 ft-lb/lb R(rankine), $T_t$ is temperature of the chamber measured in rankine, $gamma$ being the ratio of gas specific heats, and the gravitational constant $g_c$ measured in ft/s².



My issue is for the worked out problem on the guide, they give an example here but the answer is in in² instead of ft². I'm not sure how they got inches instead of feet because they didn't do any kind of conversion that I can tell. I tried following the units to see how they got inches but I'm not sure. Shouldn't the answer be in feet, and if not how is it inches?







rockets nozzle rocket-equation






share|improve this question









New contributor




MAP3 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




MAP3 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 3 hours ago









Russell Borogove

87k3291376




87k3291376






New contributor




MAP3 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 3 hours ago









MAP3MAP3

132




132




New contributor




MAP3 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





MAP3 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






MAP3 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • $begingroup$
    You can learn more about MathJax for equations here. I removed the rocketlab tag; after reading that the address and original text was from circa 1967, it doesn't seem to be related to the same company that the tag refers to.
    $endgroup$
    – uhoh
    3 hours ago










  • $begingroup$
    This is really a no-good equation because it has pounds mass (in the flowrate) over pounds force (in the press) outside the radical. It should be the mass flowrate in every engineer's favorite unit, slugs/sec. See Sutton p. 61 pyrobin.com/files/Rocket%20Propulsion%20Elements.pdf
    $endgroup$
    – Organic Marble
    2 hours ago












  • $begingroup$
    @OrganicMarble Are the units for $R$ supposed to be ft-lbf / lbm R?
    $endgroup$
    – Russell Borogove
    2 hours ago












  • $begingroup$
    @RussellBorogove actually no. To be consistent it should be ft-lbf / slug R engineeringtoolbox.com/…
    $endgroup$
    – Organic Marble
    2 hours ago








  • 1




    $begingroup$
    @OrganicMarble Same dimensions, at least.
    $endgroup$
    – Russell Borogove
    2 hours ago


















  • $begingroup$
    You can learn more about MathJax for equations here. I removed the rocketlab tag; after reading that the address and original text was from circa 1967, it doesn't seem to be related to the same company that the tag refers to.
    $endgroup$
    – uhoh
    3 hours ago










  • $begingroup$
    This is really a no-good equation because it has pounds mass (in the flowrate) over pounds force (in the press) outside the radical. It should be the mass flowrate in every engineer's favorite unit, slugs/sec. See Sutton p. 61 pyrobin.com/files/Rocket%20Propulsion%20Elements.pdf
    $endgroup$
    – Organic Marble
    2 hours ago












  • $begingroup$
    @OrganicMarble Are the units for $R$ supposed to be ft-lbf / lbm R?
    $endgroup$
    – Russell Borogove
    2 hours ago












  • $begingroup$
    @RussellBorogove actually no. To be consistent it should be ft-lbf / slug R engineeringtoolbox.com/…
    $endgroup$
    – Organic Marble
    2 hours ago








  • 1




    $begingroup$
    @OrganicMarble Same dimensions, at least.
    $endgroup$
    – Russell Borogove
    2 hours ago
















$begingroup$
You can learn more about MathJax for equations here. I removed the rocketlab tag; after reading that the address and original text was from circa 1967, it doesn't seem to be related to the same company that the tag refers to.
$endgroup$
– uhoh
3 hours ago




$begingroup$
You can learn more about MathJax for equations here. I removed the rocketlab tag; after reading that the address and original text was from circa 1967, it doesn't seem to be related to the same company that the tag refers to.
$endgroup$
– uhoh
3 hours ago












$begingroup$
This is really a no-good equation because it has pounds mass (in the flowrate) over pounds force (in the press) outside the radical. It should be the mass flowrate in every engineer's favorite unit, slugs/sec. See Sutton p. 61 pyrobin.com/files/Rocket%20Propulsion%20Elements.pdf
$endgroup$
– Organic Marble
2 hours ago






$begingroup$
This is really a no-good equation because it has pounds mass (in the flowrate) over pounds force (in the press) outside the radical. It should be the mass flowrate in every engineer's favorite unit, slugs/sec. See Sutton p. 61 pyrobin.com/files/Rocket%20Propulsion%20Elements.pdf
$endgroup$
– Organic Marble
2 hours ago














$begingroup$
@OrganicMarble Are the units for $R$ supposed to be ft-lbf / lbm R?
$endgroup$
– Russell Borogove
2 hours ago






$begingroup$
@OrganicMarble Are the units for $R$ supposed to be ft-lbf / lbm R?
$endgroup$
– Russell Borogove
2 hours ago














$begingroup$
@RussellBorogove actually no. To be consistent it should be ft-lbf / slug R engineeringtoolbox.com/…
$endgroup$
– Organic Marble
2 hours ago






$begingroup$
@RussellBorogove actually no. To be consistent it should be ft-lbf / slug R engineeringtoolbox.com/…
$endgroup$
– Organic Marble
2 hours ago






1




1




$begingroup$
@OrganicMarble Same dimensions, at least.
$endgroup$
– Russell Borogove
2 hours ago




$begingroup$
@OrganicMarble Same dimensions, at least.
$endgroup$
– Russell Borogove
2 hours ago










2 Answers
2






active

oldest

votes


















1












$begingroup$

$R$ and $g_c$ each have a foot component in their units; therefore the feet cancel out when $R$ is divided by $g_c$.



$P_t$ is in pounds per square inch; since you're dividing by that, it's effectively units of square inch per pound, which is where the square inches in the answer comes from.



The rest of the unit cancellation is confusing because of the use of pounds as both a unit of mass and a unit of force (weight). This thread on thespacerace.com discusses the different ways of presenting your equation; the money quote is here:




Outside the square root, my equation uses slugs for the mass flow rate, while the other equation uses pounds (i.e. weight). To convert pounds to slugs we must divide by gc outside the square root.



Inside the square root, my equation uses R' equal to 49,720 ft-lb/slug-R, while the other equation uses 1545.32 ft-lb/lb-R. To convert ft-lb/lb-R to ft-lb/slug-R we must multiple by gc inside the square root.



The combination of these two conversion factors is,



1/gc * (gc)^1/2 = 1/gc^1/2



therefore we end up with gc in the demoninator inside the square root.







share|improve this answer











$endgroup$













  • $begingroup$
    Nice edit, I was just going ask about that unit on gamma....
    $endgroup$
    – Organic Marble
    3 hours ago






  • 1




    $begingroup$
    Zing! Yeah, I misread the unit attribution.
    $endgroup$
    – Russell Borogove
    3 hours ago










  • $begingroup$
    It's not the right pounds though outside the radical. Bad equation! Bad! (Hits equation on nose with rolled up newspaper)
    $endgroup$
    – Organic Marble
    2 hours ago












  • $begingroup$
    Ugh, flowrate being mass rather than force? Maybe I'll delete everything except the inch/foot portion of my analysis, since this is way out of my wheelhouse.
    $endgroup$
    – Russell Borogove
    2 hours ago



















2












$begingroup$

That equation as you give it with the values you supply is a bad mish-mash of units. It's painful to do this in the English system, but gather your courage, we can get through it.



You must specify the flowrate in $frac{slugs}{sec}$. Yes, slugs, the real engineer's unit of massTM. A slug is 1 $frac {lbf - sec^2} {ft}$ and equates to ~ 32.2 lbm. So flowrate in $frac{slugs}{sec}$ has the units of $frac{lbf-sec}{ft}$.



You also must specify the pressure in $frac{lbf}{ft^2}$.



Dividing through you get outside the radical the units of $ft-sec$.



Inside the radical the gas constant is $frac{ft-lbf}{slug-R}$. The R cancels out with the temperature unit. gamma is dimensionless.



So if you substitute in $frac{lbf- sec^2}{ft}$ for the slug, you end up with $frac{ft^2}{sec^2}$ inside the radical.



Taking the square root, it's $frac{ft}{sec}$, then multiply by the $ft-sec$ outside the radical, to get $ft^2$.



Welcome to the world of Apollo and Shuttle rocket engine calculations.



enter image description here






share|improve this answer











$endgroup$













  • $begingroup$
    Welcome to the world of Apollo and Shuttle rocket engine calculations and real engineers.
    $endgroup$
    – uhoh
    2 hours ago










  • $begingroup$
    Real engineers go metric, not like those amateurs at NASA in the old days.
    $endgroup$
    – Russell Borogove
    2 hours ago








  • 1




    $begingroup$
    I was caught in the transition, my books in college had both. Shuttle and Apollo were all English, ISS is metric. Either is OK if you are used to it but metric is a lot more intuitive.
    $endgroup$
    – Organic Marble
    2 hours ago












  • $begingroup$
    I understand how you got ft^2 but in the example problem they got in^2 without doing any kind of feet -> inches conversion that I can tell at least, which is why I was confused.
    $endgroup$
    – MAP3
    1 hour ago










  • $begingroup$
    My eyes glaze over when they divide lbm by lbf and have them cancel out. That's just wrong so you can quit reading right there. It looks superficially ok but it's like cancelling feet with centistokes.
    $endgroup$
    – Organic Marble
    1 hour ago













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "508"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});






MAP3 is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fspace.stackexchange.com%2fquestions%2f34711%2fissue-with-units-for-a-rocket-nozzle-throat-area-problem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

$R$ and $g_c$ each have a foot component in their units; therefore the feet cancel out when $R$ is divided by $g_c$.



$P_t$ is in pounds per square inch; since you're dividing by that, it's effectively units of square inch per pound, which is where the square inches in the answer comes from.



The rest of the unit cancellation is confusing because of the use of pounds as both a unit of mass and a unit of force (weight). This thread on thespacerace.com discusses the different ways of presenting your equation; the money quote is here:




Outside the square root, my equation uses slugs for the mass flow rate, while the other equation uses pounds (i.e. weight). To convert pounds to slugs we must divide by gc outside the square root.



Inside the square root, my equation uses R' equal to 49,720 ft-lb/slug-R, while the other equation uses 1545.32 ft-lb/lb-R. To convert ft-lb/lb-R to ft-lb/slug-R we must multiple by gc inside the square root.



The combination of these two conversion factors is,



1/gc * (gc)^1/2 = 1/gc^1/2



therefore we end up with gc in the demoninator inside the square root.







share|improve this answer











$endgroup$













  • $begingroup$
    Nice edit, I was just going ask about that unit on gamma....
    $endgroup$
    – Organic Marble
    3 hours ago






  • 1




    $begingroup$
    Zing! Yeah, I misread the unit attribution.
    $endgroup$
    – Russell Borogove
    3 hours ago










  • $begingroup$
    It's not the right pounds though outside the radical. Bad equation! Bad! (Hits equation on nose with rolled up newspaper)
    $endgroup$
    – Organic Marble
    2 hours ago












  • $begingroup$
    Ugh, flowrate being mass rather than force? Maybe I'll delete everything except the inch/foot portion of my analysis, since this is way out of my wheelhouse.
    $endgroup$
    – Russell Borogove
    2 hours ago
















1












$begingroup$

$R$ and $g_c$ each have a foot component in their units; therefore the feet cancel out when $R$ is divided by $g_c$.



$P_t$ is in pounds per square inch; since you're dividing by that, it's effectively units of square inch per pound, which is where the square inches in the answer comes from.



The rest of the unit cancellation is confusing because of the use of pounds as both a unit of mass and a unit of force (weight). This thread on thespacerace.com discusses the different ways of presenting your equation; the money quote is here:




Outside the square root, my equation uses slugs for the mass flow rate, while the other equation uses pounds (i.e. weight). To convert pounds to slugs we must divide by gc outside the square root.



Inside the square root, my equation uses R' equal to 49,720 ft-lb/slug-R, while the other equation uses 1545.32 ft-lb/lb-R. To convert ft-lb/lb-R to ft-lb/slug-R we must multiple by gc inside the square root.



The combination of these two conversion factors is,



1/gc * (gc)^1/2 = 1/gc^1/2



therefore we end up with gc in the demoninator inside the square root.







share|improve this answer











$endgroup$













  • $begingroup$
    Nice edit, I was just going ask about that unit on gamma....
    $endgroup$
    – Organic Marble
    3 hours ago






  • 1




    $begingroup$
    Zing! Yeah, I misread the unit attribution.
    $endgroup$
    – Russell Borogove
    3 hours ago










  • $begingroup$
    It's not the right pounds though outside the radical. Bad equation! Bad! (Hits equation on nose with rolled up newspaper)
    $endgroup$
    – Organic Marble
    2 hours ago












  • $begingroup$
    Ugh, flowrate being mass rather than force? Maybe I'll delete everything except the inch/foot portion of my analysis, since this is way out of my wheelhouse.
    $endgroup$
    – Russell Borogove
    2 hours ago














1












1








1





$begingroup$

$R$ and $g_c$ each have a foot component in their units; therefore the feet cancel out when $R$ is divided by $g_c$.



$P_t$ is in pounds per square inch; since you're dividing by that, it's effectively units of square inch per pound, which is where the square inches in the answer comes from.



The rest of the unit cancellation is confusing because of the use of pounds as both a unit of mass and a unit of force (weight). This thread on thespacerace.com discusses the different ways of presenting your equation; the money quote is here:




Outside the square root, my equation uses slugs for the mass flow rate, while the other equation uses pounds (i.e. weight). To convert pounds to slugs we must divide by gc outside the square root.



Inside the square root, my equation uses R' equal to 49,720 ft-lb/slug-R, while the other equation uses 1545.32 ft-lb/lb-R. To convert ft-lb/lb-R to ft-lb/slug-R we must multiple by gc inside the square root.



The combination of these two conversion factors is,



1/gc * (gc)^1/2 = 1/gc^1/2



therefore we end up with gc in the demoninator inside the square root.







share|improve this answer











$endgroup$



$R$ and $g_c$ each have a foot component in their units; therefore the feet cancel out when $R$ is divided by $g_c$.



$P_t$ is in pounds per square inch; since you're dividing by that, it's effectively units of square inch per pound, which is where the square inches in the answer comes from.



The rest of the unit cancellation is confusing because of the use of pounds as both a unit of mass and a unit of force (weight). This thread on thespacerace.com discusses the different ways of presenting your equation; the money quote is here:




Outside the square root, my equation uses slugs for the mass flow rate, while the other equation uses pounds (i.e. weight). To convert pounds to slugs we must divide by gc outside the square root.



Inside the square root, my equation uses R' equal to 49,720 ft-lb/slug-R, while the other equation uses 1545.32 ft-lb/lb-R. To convert ft-lb/lb-R to ft-lb/slug-R we must multiple by gc inside the square root.



The combination of these two conversion factors is,



1/gc * (gc)^1/2 = 1/gc^1/2



therefore we end up with gc in the demoninator inside the square root.








share|improve this answer














share|improve this answer



share|improve this answer








edited 2 hours ago

























answered 3 hours ago









Russell BorogoveRussell Borogove

87k3291376




87k3291376












  • $begingroup$
    Nice edit, I was just going ask about that unit on gamma....
    $endgroup$
    – Organic Marble
    3 hours ago






  • 1




    $begingroup$
    Zing! Yeah, I misread the unit attribution.
    $endgroup$
    – Russell Borogove
    3 hours ago










  • $begingroup$
    It's not the right pounds though outside the radical. Bad equation! Bad! (Hits equation on nose with rolled up newspaper)
    $endgroup$
    – Organic Marble
    2 hours ago












  • $begingroup$
    Ugh, flowrate being mass rather than force? Maybe I'll delete everything except the inch/foot portion of my analysis, since this is way out of my wheelhouse.
    $endgroup$
    – Russell Borogove
    2 hours ago


















  • $begingroup$
    Nice edit, I was just going ask about that unit on gamma....
    $endgroup$
    – Organic Marble
    3 hours ago






  • 1




    $begingroup$
    Zing! Yeah, I misread the unit attribution.
    $endgroup$
    – Russell Borogove
    3 hours ago










  • $begingroup$
    It's not the right pounds though outside the radical. Bad equation! Bad! (Hits equation on nose with rolled up newspaper)
    $endgroup$
    – Organic Marble
    2 hours ago












  • $begingroup$
    Ugh, flowrate being mass rather than force? Maybe I'll delete everything except the inch/foot portion of my analysis, since this is way out of my wheelhouse.
    $endgroup$
    – Russell Borogove
    2 hours ago
















$begingroup$
Nice edit, I was just going ask about that unit on gamma....
$endgroup$
– Organic Marble
3 hours ago




$begingroup$
Nice edit, I was just going ask about that unit on gamma....
$endgroup$
– Organic Marble
3 hours ago




1




1




$begingroup$
Zing! Yeah, I misread the unit attribution.
$endgroup$
– Russell Borogove
3 hours ago




$begingroup$
Zing! Yeah, I misread the unit attribution.
$endgroup$
– Russell Borogove
3 hours ago












$begingroup$
It's not the right pounds though outside the radical. Bad equation! Bad! (Hits equation on nose with rolled up newspaper)
$endgroup$
– Organic Marble
2 hours ago






$begingroup$
It's not the right pounds though outside the radical. Bad equation! Bad! (Hits equation on nose with rolled up newspaper)
$endgroup$
– Organic Marble
2 hours ago














$begingroup$
Ugh, flowrate being mass rather than force? Maybe I'll delete everything except the inch/foot portion of my analysis, since this is way out of my wheelhouse.
$endgroup$
– Russell Borogove
2 hours ago




$begingroup$
Ugh, flowrate being mass rather than force? Maybe I'll delete everything except the inch/foot portion of my analysis, since this is way out of my wheelhouse.
$endgroup$
– Russell Borogove
2 hours ago











2












$begingroup$

That equation as you give it with the values you supply is a bad mish-mash of units. It's painful to do this in the English system, but gather your courage, we can get through it.



You must specify the flowrate in $frac{slugs}{sec}$. Yes, slugs, the real engineer's unit of massTM. A slug is 1 $frac {lbf - sec^2} {ft}$ and equates to ~ 32.2 lbm. So flowrate in $frac{slugs}{sec}$ has the units of $frac{lbf-sec}{ft}$.



You also must specify the pressure in $frac{lbf}{ft^2}$.



Dividing through you get outside the radical the units of $ft-sec$.



Inside the radical the gas constant is $frac{ft-lbf}{slug-R}$. The R cancels out with the temperature unit. gamma is dimensionless.



So if you substitute in $frac{lbf- sec^2}{ft}$ for the slug, you end up with $frac{ft^2}{sec^2}$ inside the radical.



Taking the square root, it's $frac{ft}{sec}$, then multiply by the $ft-sec$ outside the radical, to get $ft^2$.



Welcome to the world of Apollo and Shuttle rocket engine calculations.



enter image description here






share|improve this answer











$endgroup$













  • $begingroup$
    Welcome to the world of Apollo and Shuttle rocket engine calculations and real engineers.
    $endgroup$
    – uhoh
    2 hours ago










  • $begingroup$
    Real engineers go metric, not like those amateurs at NASA in the old days.
    $endgroup$
    – Russell Borogove
    2 hours ago








  • 1




    $begingroup$
    I was caught in the transition, my books in college had both. Shuttle and Apollo were all English, ISS is metric. Either is OK if you are used to it but metric is a lot more intuitive.
    $endgroup$
    – Organic Marble
    2 hours ago












  • $begingroup$
    I understand how you got ft^2 but in the example problem they got in^2 without doing any kind of feet -> inches conversion that I can tell at least, which is why I was confused.
    $endgroup$
    – MAP3
    1 hour ago










  • $begingroup$
    My eyes glaze over when they divide lbm by lbf and have them cancel out. That's just wrong so you can quit reading right there. It looks superficially ok but it's like cancelling feet with centistokes.
    $endgroup$
    – Organic Marble
    1 hour ago


















2












$begingroup$

That equation as you give it with the values you supply is a bad mish-mash of units. It's painful to do this in the English system, but gather your courage, we can get through it.



You must specify the flowrate in $frac{slugs}{sec}$. Yes, slugs, the real engineer's unit of massTM. A slug is 1 $frac {lbf - sec^2} {ft}$ and equates to ~ 32.2 lbm. So flowrate in $frac{slugs}{sec}$ has the units of $frac{lbf-sec}{ft}$.



You also must specify the pressure in $frac{lbf}{ft^2}$.



Dividing through you get outside the radical the units of $ft-sec$.



Inside the radical the gas constant is $frac{ft-lbf}{slug-R}$. The R cancels out with the temperature unit. gamma is dimensionless.



So if you substitute in $frac{lbf- sec^2}{ft}$ for the slug, you end up with $frac{ft^2}{sec^2}$ inside the radical.



Taking the square root, it's $frac{ft}{sec}$, then multiply by the $ft-sec$ outside the radical, to get $ft^2$.



Welcome to the world of Apollo and Shuttle rocket engine calculations.



enter image description here






share|improve this answer











$endgroup$













  • $begingroup$
    Welcome to the world of Apollo and Shuttle rocket engine calculations and real engineers.
    $endgroup$
    – uhoh
    2 hours ago










  • $begingroup$
    Real engineers go metric, not like those amateurs at NASA in the old days.
    $endgroup$
    – Russell Borogove
    2 hours ago








  • 1




    $begingroup$
    I was caught in the transition, my books in college had both. Shuttle and Apollo were all English, ISS is metric. Either is OK if you are used to it but metric is a lot more intuitive.
    $endgroup$
    – Organic Marble
    2 hours ago












  • $begingroup$
    I understand how you got ft^2 but in the example problem they got in^2 without doing any kind of feet -> inches conversion that I can tell at least, which is why I was confused.
    $endgroup$
    – MAP3
    1 hour ago










  • $begingroup$
    My eyes glaze over when they divide lbm by lbf and have them cancel out. That's just wrong so you can quit reading right there. It looks superficially ok but it's like cancelling feet with centistokes.
    $endgroup$
    – Organic Marble
    1 hour ago
















2












2








2





$begingroup$

That equation as you give it with the values you supply is a bad mish-mash of units. It's painful to do this in the English system, but gather your courage, we can get through it.



You must specify the flowrate in $frac{slugs}{sec}$. Yes, slugs, the real engineer's unit of massTM. A slug is 1 $frac {lbf - sec^2} {ft}$ and equates to ~ 32.2 lbm. So flowrate in $frac{slugs}{sec}$ has the units of $frac{lbf-sec}{ft}$.



You also must specify the pressure in $frac{lbf}{ft^2}$.



Dividing through you get outside the radical the units of $ft-sec$.



Inside the radical the gas constant is $frac{ft-lbf}{slug-R}$. The R cancels out with the temperature unit. gamma is dimensionless.



So if you substitute in $frac{lbf- sec^2}{ft}$ for the slug, you end up with $frac{ft^2}{sec^2}$ inside the radical.



Taking the square root, it's $frac{ft}{sec}$, then multiply by the $ft-sec$ outside the radical, to get $ft^2$.



Welcome to the world of Apollo and Shuttle rocket engine calculations.



enter image description here






share|improve this answer











$endgroup$



That equation as you give it with the values you supply is a bad mish-mash of units. It's painful to do this in the English system, but gather your courage, we can get through it.



You must specify the flowrate in $frac{slugs}{sec}$. Yes, slugs, the real engineer's unit of massTM. A slug is 1 $frac {lbf - sec^2} {ft}$ and equates to ~ 32.2 lbm. So flowrate in $frac{slugs}{sec}$ has the units of $frac{lbf-sec}{ft}$.



You also must specify the pressure in $frac{lbf}{ft^2}$.



Dividing through you get outside the radical the units of $ft-sec$.



Inside the radical the gas constant is $frac{ft-lbf}{slug-R}$. The R cancels out with the temperature unit. gamma is dimensionless.



So if you substitute in $frac{lbf- sec^2}{ft}$ for the slug, you end up with $frac{ft^2}{sec^2}$ inside the radical.



Taking the square root, it's $frac{ft}{sec}$, then multiply by the $ft-sec$ outside the radical, to get $ft^2$.



Welcome to the world of Apollo and Shuttle rocket engine calculations.



enter image description here







share|improve this answer














share|improve this answer



share|improve this answer








edited 1 hour ago

























answered 2 hours ago









Organic MarbleOrganic Marble

58.1k3159248




58.1k3159248












  • $begingroup$
    Welcome to the world of Apollo and Shuttle rocket engine calculations and real engineers.
    $endgroup$
    – uhoh
    2 hours ago










  • $begingroup$
    Real engineers go metric, not like those amateurs at NASA in the old days.
    $endgroup$
    – Russell Borogove
    2 hours ago








  • 1




    $begingroup$
    I was caught in the transition, my books in college had both. Shuttle and Apollo were all English, ISS is metric. Either is OK if you are used to it but metric is a lot more intuitive.
    $endgroup$
    – Organic Marble
    2 hours ago












  • $begingroup$
    I understand how you got ft^2 but in the example problem they got in^2 without doing any kind of feet -> inches conversion that I can tell at least, which is why I was confused.
    $endgroup$
    – MAP3
    1 hour ago










  • $begingroup$
    My eyes glaze over when they divide lbm by lbf and have them cancel out. That's just wrong so you can quit reading right there. It looks superficially ok but it's like cancelling feet with centistokes.
    $endgroup$
    – Organic Marble
    1 hour ago




















  • $begingroup$
    Welcome to the world of Apollo and Shuttle rocket engine calculations and real engineers.
    $endgroup$
    – uhoh
    2 hours ago










  • $begingroup$
    Real engineers go metric, not like those amateurs at NASA in the old days.
    $endgroup$
    – Russell Borogove
    2 hours ago








  • 1




    $begingroup$
    I was caught in the transition, my books in college had both. Shuttle and Apollo were all English, ISS is metric. Either is OK if you are used to it but metric is a lot more intuitive.
    $endgroup$
    – Organic Marble
    2 hours ago












  • $begingroup$
    I understand how you got ft^2 but in the example problem they got in^2 without doing any kind of feet -> inches conversion that I can tell at least, which is why I was confused.
    $endgroup$
    – MAP3
    1 hour ago










  • $begingroup$
    My eyes glaze over when they divide lbm by lbf and have them cancel out. That's just wrong so you can quit reading right there. It looks superficially ok but it's like cancelling feet with centistokes.
    $endgroup$
    – Organic Marble
    1 hour ago


















$begingroup$
Welcome to the world of Apollo and Shuttle rocket engine calculations and real engineers.
$endgroup$
– uhoh
2 hours ago




$begingroup$
Welcome to the world of Apollo and Shuttle rocket engine calculations and real engineers.
$endgroup$
– uhoh
2 hours ago












$begingroup$
Real engineers go metric, not like those amateurs at NASA in the old days.
$endgroup$
– Russell Borogove
2 hours ago






$begingroup$
Real engineers go metric, not like those amateurs at NASA in the old days.
$endgroup$
– Russell Borogove
2 hours ago






1




1




$begingroup$
I was caught in the transition, my books in college had both. Shuttle and Apollo were all English, ISS is metric. Either is OK if you are used to it but metric is a lot more intuitive.
$endgroup$
– Organic Marble
2 hours ago






$begingroup$
I was caught in the transition, my books in college had both. Shuttle and Apollo were all English, ISS is metric. Either is OK if you are used to it but metric is a lot more intuitive.
$endgroup$
– Organic Marble
2 hours ago














$begingroup$
I understand how you got ft^2 but in the example problem they got in^2 without doing any kind of feet -> inches conversion that I can tell at least, which is why I was confused.
$endgroup$
– MAP3
1 hour ago




$begingroup$
I understand how you got ft^2 but in the example problem they got in^2 without doing any kind of feet -> inches conversion that I can tell at least, which is why I was confused.
$endgroup$
– MAP3
1 hour ago












$begingroup$
My eyes glaze over when they divide lbm by lbf and have them cancel out. That's just wrong so you can quit reading right there. It looks superficially ok but it's like cancelling feet with centistokes.
$endgroup$
– Organic Marble
1 hour ago






$begingroup$
My eyes glaze over when they divide lbm by lbf and have them cancel out. That's just wrong so you can quit reading right there. It looks superficially ok but it's like cancelling feet with centistokes.
$endgroup$
– Organic Marble
1 hour ago












MAP3 is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















MAP3 is a new contributor. Be nice, and check out our Code of Conduct.













MAP3 is a new contributor. Be nice, and check out our Code of Conduct.












MAP3 is a new contributor. Be nice, and check out our Code of Conduct.
















Thanks for contributing an answer to Space Exploration Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fspace.stackexchange.com%2fquestions%2f34711%2fissue-with-units-for-a-rocket-nozzle-throat-area-problem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ponta tanko

Tantalo (mitologio)

Erzsébet Schaár