How to favour a particular class during classification using XGBoost?












0












$begingroup$


I am using a simple XGBoost model to classify 2 classes (0 and 1) in a binary context. In case of the original data, the 0 is the majority class and 1 the minority class. The thing which is happening is that in case of classification, most 0s are being classified correctly, with many going into 1s, but most 1s are being misclassified into 0s.



I am fairly new to this, and having looked at various documentations and questions on SE, am really confused as to how I can specify my XGBoost model to favour class 1 (to be precise, if most 0s are misclassified into 1s, that is not a problem, but I want that most 1s are correctly classified as 1s (to increase the true positives, if there are false positives that is something which isn't much of a problem). The segment of code I am presently using to train and test the XGBoost are as follows (afterwards I use the confusion matrix in which the true positives (1s) are highly misclassified into 0s).



from xgboost import XGBClassifier

# fit model on training data
model = XGBClassifier()
model.fit(X_train, labels) # where labels are either 1s or 0s

# make predictions for test data
y_pred = model.predict(X_test)
y_pred = y_pred > 0.70 # account for > 0.70 probability
y_pred = y_pred.astype(int)

print(y_pred)


I just want to know if there is a simple way to specify to the XGBoost model any parameter in my code, so that the true positive rate can be increased? I can compromise of false positives being high, but I want the number of 1s to be correctly classified as 1s, instead of most of them going into 0s. Any help in this regard is appreciated.









share









$endgroup$

















    0












    $begingroup$


    I am using a simple XGBoost model to classify 2 classes (0 and 1) in a binary context. In case of the original data, the 0 is the majority class and 1 the minority class. The thing which is happening is that in case of classification, most 0s are being classified correctly, with many going into 1s, but most 1s are being misclassified into 0s.



    I am fairly new to this, and having looked at various documentations and questions on SE, am really confused as to how I can specify my XGBoost model to favour class 1 (to be precise, if most 0s are misclassified into 1s, that is not a problem, but I want that most 1s are correctly classified as 1s (to increase the true positives, if there are false positives that is something which isn't much of a problem). The segment of code I am presently using to train and test the XGBoost are as follows (afterwards I use the confusion matrix in which the true positives (1s) are highly misclassified into 0s).



    from xgboost import XGBClassifier

    # fit model on training data
    model = XGBClassifier()
    model.fit(X_train, labels) # where labels are either 1s or 0s

    # make predictions for test data
    y_pred = model.predict(X_test)
    y_pred = y_pred > 0.70 # account for > 0.70 probability
    y_pred = y_pred.astype(int)

    print(y_pred)


    I just want to know if there is a simple way to specify to the XGBoost model any parameter in my code, so that the true positive rate can be increased? I can compromise of false positives being high, but I want the number of 1s to be correctly classified as 1s, instead of most of them going into 0s. Any help in this regard is appreciated.









    share









    $endgroup$















      0












      0








      0





      $begingroup$


      I am using a simple XGBoost model to classify 2 classes (0 and 1) in a binary context. In case of the original data, the 0 is the majority class and 1 the minority class. The thing which is happening is that in case of classification, most 0s are being classified correctly, with many going into 1s, but most 1s are being misclassified into 0s.



      I am fairly new to this, and having looked at various documentations and questions on SE, am really confused as to how I can specify my XGBoost model to favour class 1 (to be precise, if most 0s are misclassified into 1s, that is not a problem, but I want that most 1s are correctly classified as 1s (to increase the true positives, if there are false positives that is something which isn't much of a problem). The segment of code I am presently using to train and test the XGBoost are as follows (afterwards I use the confusion matrix in which the true positives (1s) are highly misclassified into 0s).



      from xgboost import XGBClassifier

      # fit model on training data
      model = XGBClassifier()
      model.fit(X_train, labels) # where labels are either 1s or 0s

      # make predictions for test data
      y_pred = model.predict(X_test)
      y_pred = y_pred > 0.70 # account for > 0.70 probability
      y_pred = y_pred.astype(int)

      print(y_pred)


      I just want to know if there is a simple way to specify to the XGBoost model any parameter in my code, so that the true positive rate can be increased? I can compromise of false positives being high, but I want the number of 1s to be correctly classified as 1s, instead of most of them going into 0s. Any help in this regard is appreciated.









      share









      $endgroup$




      I am using a simple XGBoost model to classify 2 classes (0 and 1) in a binary context. In case of the original data, the 0 is the majority class and 1 the minority class. The thing which is happening is that in case of classification, most 0s are being classified correctly, with many going into 1s, but most 1s are being misclassified into 0s.



      I am fairly new to this, and having looked at various documentations and questions on SE, am really confused as to how I can specify my XGBoost model to favour class 1 (to be precise, if most 0s are misclassified into 1s, that is not a problem, but I want that most 1s are correctly classified as 1s (to increase the true positives, if there are false positives that is something which isn't much of a problem). The segment of code I am presently using to train and test the XGBoost are as follows (afterwards I use the confusion matrix in which the true positives (1s) are highly misclassified into 0s).



      from xgboost import XGBClassifier

      # fit model on training data
      model = XGBClassifier()
      model.fit(X_train, labels) # where labels are either 1s or 0s

      # make predictions for test data
      y_pred = model.predict(X_test)
      y_pred = y_pred > 0.70 # account for > 0.70 probability
      y_pred = y_pred.astype(int)

      print(y_pred)


      I just want to know if there is a simple way to specify to the XGBoost model any parameter in my code, so that the true positive rate can be increased? I can compromise of false positives being high, but I want the number of 1s to be correctly classified as 1s, instead of most of them going into 0s. Any help in this regard is appreciated.







      machine-learning python bigdata xgboost





      share












      share










      share



      share










      asked 29 secs ago









      JChatJChat

      133




      133






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "557"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47387%2fhow-to-favour-a-particular-class-during-classification-using-xgboost%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47387%2fhow-to-favour-a-particular-class-during-classification-using-xgboost%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ponta tanko

          Tantalo (mitologio)

          Erzsébet Schaár