IndexError: Too many indices for array?
$begingroup$
When I run this code , I get this error:
IndexError: Too many indices for array
I tried some soltions found on net, but it doesn't work.
# returns a dictionary of n-grams frequency for any list
def ngrams_freq(listname, n):
counts = dict()
# make n-grams as string iteratively
grams = [' '.join(listname[i:i+n]) for i in range(len(listname)-n)]
for gram in grams:
if gram not in counts:
counts[gram] = 1
else:
counts[gram] += 1
return counts
# returns the values of features for any list
def feature_freq(listname,n):
counts = dict()
# make n-grams as string iteratively
grams = [' '.join(listname[i:i+n]) for i in range(len(listname)-n)]
for gram in grams:
counts[gram] = 0
for gram in grams:
if gram in features:
counts[gram] += 1
return counts
# values of n for finding n-grams
n_values = [3]
# Base address for attack data files
add = "ADFA-LD/ADFA-LD/Attack_Data_Master/"
# initializing dictionary for n-grams from all files
traindict = {}
print(" Training data from Normal")
Normal_list =
in_address = "ADFA-LD/ADFA-LD/Training_Data_Master/"
k = 1
read_files = glob.glob(in_address+"/*.txt")
for f in read_files:
with open(f, "r") as infile:
globals()['Normal%s_list_array' % str(k)] = infile.read().split()
Normal_list.extend(globals()['Normal%s_list_array' % str(k)])
k += 1
#print(Normal_list)
# number of lists for distinct files
Normal_list_size = k-1
# combined list of all files
listname = Normal_list
# finding n-grams and extracting top 30%
for n in n_values:
dictname = ngrams_freq(listname,n)
# Creating feature list
features =
#features.append('Label')
for k,v in dictname.items():
features.append(k)
#print (features) #this contains sequences only
# Writing training data to file, this file contains sequences of 3-grams
with open('train1.csv','w') as csvfile:
# writing features as header
writer = csv.DictWriter(csvfile, fieldnames = features,
extrasaction='ignore')
writer.writeheader();
features_a = np.asarray(features)
X, y = features_a[:, 0], features_a[:, 1]
if any one can help me, I'll be thankful.
Thank you.
python keras
$endgroup$
add a comment |
$begingroup$
When I run this code , I get this error:
IndexError: Too many indices for array
I tried some soltions found on net, but it doesn't work.
# returns a dictionary of n-grams frequency for any list
def ngrams_freq(listname, n):
counts = dict()
# make n-grams as string iteratively
grams = [' '.join(listname[i:i+n]) for i in range(len(listname)-n)]
for gram in grams:
if gram not in counts:
counts[gram] = 1
else:
counts[gram] += 1
return counts
# returns the values of features for any list
def feature_freq(listname,n):
counts = dict()
# make n-grams as string iteratively
grams = [' '.join(listname[i:i+n]) for i in range(len(listname)-n)]
for gram in grams:
counts[gram] = 0
for gram in grams:
if gram in features:
counts[gram] += 1
return counts
# values of n for finding n-grams
n_values = [3]
# Base address for attack data files
add = "ADFA-LD/ADFA-LD/Attack_Data_Master/"
# initializing dictionary for n-grams from all files
traindict = {}
print(" Training data from Normal")
Normal_list =
in_address = "ADFA-LD/ADFA-LD/Training_Data_Master/"
k = 1
read_files = glob.glob(in_address+"/*.txt")
for f in read_files:
with open(f, "r") as infile:
globals()['Normal%s_list_array' % str(k)] = infile.read().split()
Normal_list.extend(globals()['Normal%s_list_array' % str(k)])
k += 1
#print(Normal_list)
# number of lists for distinct files
Normal_list_size = k-1
# combined list of all files
listname = Normal_list
# finding n-grams and extracting top 30%
for n in n_values:
dictname = ngrams_freq(listname,n)
# Creating feature list
features =
#features.append('Label')
for k,v in dictname.items():
features.append(k)
#print (features) #this contains sequences only
# Writing training data to file, this file contains sequences of 3-grams
with open('train1.csv','w') as csvfile:
# writing features as header
writer = csv.DictWriter(csvfile, fieldnames = features,
extrasaction='ignore')
writer.writeheader();
features_a = np.asarray(features)
X, y = features_a[:, 0], features_a[:, 1]
if any one can help me, I'll be thankful.
Thank you.
python keras
$endgroup$
add a comment |
$begingroup$
When I run this code , I get this error:
IndexError: Too many indices for array
I tried some soltions found on net, but it doesn't work.
# returns a dictionary of n-grams frequency for any list
def ngrams_freq(listname, n):
counts = dict()
# make n-grams as string iteratively
grams = [' '.join(listname[i:i+n]) for i in range(len(listname)-n)]
for gram in grams:
if gram not in counts:
counts[gram] = 1
else:
counts[gram] += 1
return counts
# returns the values of features for any list
def feature_freq(listname,n):
counts = dict()
# make n-grams as string iteratively
grams = [' '.join(listname[i:i+n]) for i in range(len(listname)-n)]
for gram in grams:
counts[gram] = 0
for gram in grams:
if gram in features:
counts[gram] += 1
return counts
# values of n for finding n-grams
n_values = [3]
# Base address for attack data files
add = "ADFA-LD/ADFA-LD/Attack_Data_Master/"
# initializing dictionary for n-grams from all files
traindict = {}
print(" Training data from Normal")
Normal_list =
in_address = "ADFA-LD/ADFA-LD/Training_Data_Master/"
k = 1
read_files = glob.glob(in_address+"/*.txt")
for f in read_files:
with open(f, "r") as infile:
globals()['Normal%s_list_array' % str(k)] = infile.read().split()
Normal_list.extend(globals()['Normal%s_list_array' % str(k)])
k += 1
#print(Normal_list)
# number of lists for distinct files
Normal_list_size = k-1
# combined list of all files
listname = Normal_list
# finding n-grams and extracting top 30%
for n in n_values:
dictname = ngrams_freq(listname,n)
# Creating feature list
features =
#features.append('Label')
for k,v in dictname.items():
features.append(k)
#print (features) #this contains sequences only
# Writing training data to file, this file contains sequences of 3-grams
with open('train1.csv','w') as csvfile:
# writing features as header
writer = csv.DictWriter(csvfile, fieldnames = features,
extrasaction='ignore')
writer.writeheader();
features_a = np.asarray(features)
X, y = features_a[:, 0], features_a[:, 1]
if any one can help me, I'll be thankful.
Thank you.
python keras
$endgroup$
When I run this code , I get this error:
IndexError: Too many indices for array
I tried some soltions found on net, but it doesn't work.
# returns a dictionary of n-grams frequency for any list
def ngrams_freq(listname, n):
counts = dict()
# make n-grams as string iteratively
grams = [' '.join(listname[i:i+n]) for i in range(len(listname)-n)]
for gram in grams:
if gram not in counts:
counts[gram] = 1
else:
counts[gram] += 1
return counts
# returns the values of features for any list
def feature_freq(listname,n):
counts = dict()
# make n-grams as string iteratively
grams = [' '.join(listname[i:i+n]) for i in range(len(listname)-n)]
for gram in grams:
counts[gram] = 0
for gram in grams:
if gram in features:
counts[gram] += 1
return counts
# values of n for finding n-grams
n_values = [3]
# Base address for attack data files
add = "ADFA-LD/ADFA-LD/Attack_Data_Master/"
# initializing dictionary for n-grams from all files
traindict = {}
print(" Training data from Normal")
Normal_list =
in_address = "ADFA-LD/ADFA-LD/Training_Data_Master/"
k = 1
read_files = glob.glob(in_address+"/*.txt")
for f in read_files:
with open(f, "r") as infile:
globals()['Normal%s_list_array' % str(k)] = infile.read().split()
Normal_list.extend(globals()['Normal%s_list_array' % str(k)])
k += 1
#print(Normal_list)
# number of lists for distinct files
Normal_list_size = k-1
# combined list of all files
listname = Normal_list
# finding n-grams and extracting top 30%
for n in n_values:
dictname = ngrams_freq(listname,n)
# Creating feature list
features =
#features.append('Label')
for k,v in dictname.items():
features.append(k)
#print (features) #this contains sequences only
# Writing training data to file, this file contains sequences of 3-grams
with open('train1.csv','w') as csvfile:
# writing features as header
writer = csv.DictWriter(csvfile, fieldnames = features,
extrasaction='ignore')
writer.writeheader();
features_a = np.asarray(features)
X, y = features_a[:, 0], features_a[:, 1]
if any one can help me, I'll be thankful.
Thank you.
python keras
python keras
asked 13 mins ago
KikioKikio
264
264
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46113%2findexerror-too-many-indices-for-array%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46113%2findexerror-too-many-indices-for-array%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown