Graphic representation of a triangle using ArrayPlot
$begingroup$
So I need to write a function which takes natural integer $n$ and returns graphical representation of a matrix $n times n$ using ArrayPlot
.
This matrix has to be pixel approximation of equilateral triangle which get better and better as $n$ increases.
I figured out a set of equilateral triangle points which is $$P={(x,y) in mathbb{R}^2:y<sqrt{3}x+frac{asqrt{3}}{2},y<-sqrt{3}x+frac{asqrt{3}}{2},y>0}$$
where $a$ is side length of this triangle.
f1[x_, a_] := -Sqrt[3]*x + (a*Sqrt[3])/2
f2[x_, a_] := Sqrt[3]*x + (a*Sqrt[3])/2
matrix[n_] := ConstantArray[0, {n, n}]
(...)
drawapprox[n_] := ArrayPlot[matrix[n], Mesh -> True]
So I make zero $n times n$ matrix and I want to put $1$ if a point belongs to $P$ but I don't know how to put together points from the plane to this 0-1 matrix to make it works. After that I just want to use ArrayPlot
function to draw new 0-1 matrix which represents triangle.
How do I make up the missing (...) part?
plotting matrix approximation
New contributor
$endgroup$
add a comment |
$begingroup$
So I need to write a function which takes natural integer $n$ and returns graphical representation of a matrix $n times n$ using ArrayPlot
.
This matrix has to be pixel approximation of equilateral triangle which get better and better as $n$ increases.
I figured out a set of equilateral triangle points which is $$P={(x,y) in mathbb{R}^2:y<sqrt{3}x+frac{asqrt{3}}{2},y<-sqrt{3}x+frac{asqrt{3}}{2},y>0}$$
where $a$ is side length of this triangle.
f1[x_, a_] := -Sqrt[3]*x + (a*Sqrt[3])/2
f2[x_, a_] := Sqrt[3]*x + (a*Sqrt[3])/2
matrix[n_] := ConstantArray[0, {n, n}]
(...)
drawapprox[n_] := ArrayPlot[matrix[n], Mesh -> True]
So I make zero $n times n$ matrix and I want to put $1$ if a point belongs to $P$ but I don't know how to put together points from the plane to this 0-1 matrix to make it works. After that I just want to use ArrayPlot
function to draw new 0-1 matrix which represents triangle.
How do I make up the missing (...) part?
plotting matrix approximation
New contributor
$endgroup$
add a comment |
$begingroup$
So I need to write a function which takes natural integer $n$ and returns graphical representation of a matrix $n times n$ using ArrayPlot
.
This matrix has to be pixel approximation of equilateral triangle which get better and better as $n$ increases.
I figured out a set of equilateral triangle points which is $$P={(x,y) in mathbb{R}^2:y<sqrt{3}x+frac{asqrt{3}}{2},y<-sqrt{3}x+frac{asqrt{3}}{2},y>0}$$
where $a$ is side length of this triangle.
f1[x_, a_] := -Sqrt[3]*x + (a*Sqrt[3])/2
f2[x_, a_] := Sqrt[3]*x + (a*Sqrt[3])/2
matrix[n_] := ConstantArray[0, {n, n}]
(...)
drawapprox[n_] := ArrayPlot[matrix[n], Mesh -> True]
So I make zero $n times n$ matrix and I want to put $1$ if a point belongs to $P$ but I don't know how to put together points from the plane to this 0-1 matrix to make it works. After that I just want to use ArrayPlot
function to draw new 0-1 matrix which represents triangle.
How do I make up the missing (...) part?
plotting matrix approximation
New contributor
$endgroup$
So I need to write a function which takes natural integer $n$ and returns graphical representation of a matrix $n times n$ using ArrayPlot
.
This matrix has to be pixel approximation of equilateral triangle which get better and better as $n$ increases.
I figured out a set of equilateral triangle points which is $$P={(x,y) in mathbb{R}^2:y<sqrt{3}x+frac{asqrt{3}}{2},y<-sqrt{3}x+frac{asqrt{3}}{2},y>0}$$
where $a$ is side length of this triangle.
f1[x_, a_] := -Sqrt[3]*x + (a*Sqrt[3])/2
f2[x_, a_] := Sqrt[3]*x + (a*Sqrt[3])/2
matrix[n_] := ConstantArray[0, {n, n}]
(...)
drawapprox[n_] := ArrayPlot[matrix[n], Mesh -> True]
So I make zero $n times n$ matrix and I want to put $1$ if a point belongs to $P$ but I don't know how to put together points from the plane to this 0-1 matrix to make it works. After that I just want to use ArrayPlot
function to draw new 0-1 matrix which represents triangle.
How do I make up the missing (...) part?
plotting matrix approximation
plotting matrix approximation
New contributor
New contributor
New contributor
asked 5 hours ago
apoxeiroapoxeiro
132
132
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Update: An alternative method using SparseArray
:
ClearAll[sa, plot2]
sa[a_] := SparseArray[{i_, j_} /;
a - i < f1[j - (a + Boole[OddQ[a]])/2, a] &&
a - i < f2[j - (a + Boole[OddQ[a]])/2, a] -> 1, {a, a}]
plot2[a_] := ArrayPlot[sa[a], Mesh -> All]
Row[plot2 /@ Range[3, 21, 2]]
Original answer:
aplot[a_] := ArrayPlot[Boole @ MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> All];
Row[Show[plot@#, Graphics[{FaceForm, EdgeForm[{Thick, Red}], SSSTriangle[#, #, #]}]] & /@
Range[3, 21, 2]]
With a = 101;
and Mesh -> None
, we get
a = 1001;
ap1001 = ArrayPlot[Boole@MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> None];
Graphics[{ap1001[[1]], FaceForm, EdgeForm[{Thick, Red}],
SSSTriangle[1001, 1001, 1001]}]
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
apoxeiro is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192959%2fgraphic-representation-of-a-triangle-using-arrayplot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Update: An alternative method using SparseArray
:
ClearAll[sa, plot2]
sa[a_] := SparseArray[{i_, j_} /;
a - i < f1[j - (a + Boole[OddQ[a]])/2, a] &&
a - i < f2[j - (a + Boole[OddQ[a]])/2, a] -> 1, {a, a}]
plot2[a_] := ArrayPlot[sa[a], Mesh -> All]
Row[plot2 /@ Range[3, 21, 2]]
Original answer:
aplot[a_] := ArrayPlot[Boole @ MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> All];
Row[Show[plot@#, Graphics[{FaceForm, EdgeForm[{Thick, Red}], SSSTriangle[#, #, #]}]] & /@
Range[3, 21, 2]]
With a = 101;
and Mesh -> None
, we get
a = 1001;
ap1001 = ArrayPlot[Boole@MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> None];
Graphics[{ap1001[[1]], FaceForm, EdgeForm[{Thick, Red}],
SSSTriangle[1001, 1001, 1001]}]
$endgroup$
add a comment |
$begingroup$
Update: An alternative method using SparseArray
:
ClearAll[sa, plot2]
sa[a_] := SparseArray[{i_, j_} /;
a - i < f1[j - (a + Boole[OddQ[a]])/2, a] &&
a - i < f2[j - (a + Boole[OddQ[a]])/2, a] -> 1, {a, a}]
plot2[a_] := ArrayPlot[sa[a], Mesh -> All]
Row[plot2 /@ Range[3, 21, 2]]
Original answer:
aplot[a_] := ArrayPlot[Boole @ MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> All];
Row[Show[plot@#, Graphics[{FaceForm, EdgeForm[{Thick, Red}], SSSTriangle[#, #, #]}]] & /@
Range[3, 21, 2]]
With a = 101;
and Mesh -> None
, we get
a = 1001;
ap1001 = ArrayPlot[Boole@MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> None];
Graphics[{ap1001[[1]], FaceForm, EdgeForm[{Thick, Red}],
SSSTriangle[1001, 1001, 1001]}]
$endgroup$
add a comment |
$begingroup$
Update: An alternative method using SparseArray
:
ClearAll[sa, plot2]
sa[a_] := SparseArray[{i_, j_} /;
a - i < f1[j - (a + Boole[OddQ[a]])/2, a] &&
a - i < f2[j - (a + Boole[OddQ[a]])/2, a] -> 1, {a, a}]
plot2[a_] := ArrayPlot[sa[a], Mesh -> All]
Row[plot2 /@ Range[3, 21, 2]]
Original answer:
aplot[a_] := ArrayPlot[Boole @ MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> All];
Row[Show[plot@#, Graphics[{FaceForm, EdgeForm[{Thick, Red}], SSSTriangle[#, #, #]}]] & /@
Range[3, 21, 2]]
With a = 101;
and Mesh -> None
, we get
a = 1001;
ap1001 = ArrayPlot[Boole@MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> None];
Graphics[{ap1001[[1]], FaceForm, EdgeForm[{Thick, Red}],
SSSTriangle[1001, 1001, 1001]}]
$endgroup$
Update: An alternative method using SparseArray
:
ClearAll[sa, plot2]
sa[a_] := SparseArray[{i_, j_} /;
a - i < f1[j - (a + Boole[OddQ[a]])/2, a] &&
a - i < f2[j - (a + Boole[OddQ[a]])/2, a] -> 1, {a, a}]
plot2[a_] := ArrayPlot[sa[a], Mesh -> All]
Row[plot2 /@ Range[3, 21, 2]]
Original answer:
aplot[a_] := ArrayPlot[Boole @ MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> All];
Row[Show[plot@#, Graphics[{FaceForm, EdgeForm[{Thick, Red}], SSSTriangle[#, #, #]}]] & /@
Range[3, 21, 2]]
With a = 101;
and Mesh -> None
, we get
a = 1001;
ap1001 = ArrayPlot[Boole@MapIndexed[
a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
matrix[a], {2}], Mesh -> None];
Graphics[{ap1001[[1]], FaceForm, EdgeForm[{Thick, Red}],
SSSTriangle[1001, 1001, 1001]}]
edited 3 hours ago
answered 3 hours ago
kglrkglr
188k10203421
188k10203421
add a comment |
add a comment |
apoxeiro is a new contributor. Be nice, and check out our Code of Conduct.
apoxeiro is a new contributor. Be nice, and check out our Code of Conduct.
apoxeiro is a new contributor. Be nice, and check out our Code of Conduct.
apoxeiro is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192959%2fgraphic-representation-of-a-triangle-using-arrayplot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown