Deep learning(MLP) on multiclass classification. Model learning only one class












0












$begingroup$


I am new to deep learning. I have imbalanced class data. I used one hot encoding and scaling to preprocess my data. I have used adamoptimizer as optimizer function and sparse categorical crossentropy as my lass function. The model always gives high accuracy on one class with very low accuracy on other classes. Here is my code:



`



===============separating test data according to classes=================



data_test = data_final[data_final.YEAR.isin(2018)]
data_test_0 = data_test[data_test['DELAY_CLASS']==0]
test_labels_0 = data_test_0.pop('DELAY_CLASS')
data_test_1 = data_test[data_test['DELAY_CLASS']==1]
test_labels_1 = data_test_1.pop('DELAY_CLASS')
data_test_2 = data_test[data_test['DELAY_CLASS']==2]
test_labels_2 = data_test_2.pop('DELAY_CLASS')
data_test_3 = data_test[data_test['DELAY_CLASS']==3]
test_labels_3 = data_test_3.pop('DELAY_CLASS')



============Extracting continuous columns from training data==============



data_train = data_train[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



============Extracting continuous columns from testing data==============



data_test = data_test[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



print("reached here")



==========SMOTE================



sm = SMOTE(random_state=2)
ad = ADASYN(random_state=2)
data_train, train_labels = sm.fit_sample(data_train, train_labels)



data_train = pd.DataFrame(data_train)
data_train = data_train.rename(columns = {0:'MONTH',1:'DAY_OF_MONTH',2:'DAY_OF_WEEK',3:'Dep_Hour',
4:'Arr_Hour', 5:'CRS_ELAPSED_TIME', 6:'DISTANCE',
7:'traffic',8:'O_SurfaceTemperatureFahrenheit',9:'O_CloudCoveragePercent',
10:'O_WindSpeedMph',11:'O_PrecipitationPreviousHourInches',12:'O_SnowfallInches',
13:'D_SurfaceTemperatureFahrenheit',14:'D_CloudCoveragePercent',15:'D_WindSpeedMph',
16:'D_PrecipitationPreviousHourInches',17:'D_SnowfallInches',18:'Bird_Strike'})



==================taking only continuous columns===================



cols = ['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']



======================scaling=============================



train_mean = data_train[cols].mean(axis=0)
train_std = data_train[cols].std(axis=0)
data_train[cols] = (data_train[cols] - train_mean) / train_std
data_test[cols] = (data_test[cols] - train_mean) / train_std
rain_labels = pd.Series(train_labels)



=====taking continuous columns from test separated data========



data_test_0 = data_test_0[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



data_test_1 = data_test_1[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK','Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



data_test_2 = data_test_2[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



data_test_3 = data_test_3[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



===================================my model====================



def build_model():
model = keras.Sequential([
layers.Dense(100, activation = 'sigmoid', input_shape=[len(data_train.keys())]),
#layers.Dropout(0.5),
layers.Dense(50, activation = 'softplus'),
#layers.Dropout(0.3),
layers.Dense(25, activation = 'sigmoid'),
#layers.Dropout(0.2),
layers.Dense(4, activation = 'softmax')
])



model.compile(loss='sparse_categorical_crossentropy',#with binary crossentropy use sigmoid and 1 output neuron
optimizer= tf.train.AdamOptimizer(0.001),
metrics=['accuracy'])
return model


model = build_model()
model.fit(data_train, train_labels, epochs=5, batch_size=128)



test_loss, test_acc = model.evaluate(data_test_0, test_labels_0)
print(test_acc)
test_loss, test_acc = model.evaluate(data_test_1, test_labels_1)
print(test_acc)
test_loss, test_acc = model.evaluate(data_test_2, test_labels_2)
print(test_acc)
test_loss, test_acc = model.evaluate(data_test_3, test_labels_3)
print(test_acc)`



The training data is flights data of 2016 and 2017 and testing data is of 2018. I have separated classes from testing data to see the class wise accuracy of testing data.



The output is:
Class 0:
44929/44929 [==============================] - 1s 12us/step
0.027710387500278218
Class 1:
10668/10668 [==============================] - 0s 11us/step
0.015935508061492312
Class 2:
33204/33204 [==============================] - 0s 9us/step
0.8956149861318866
Class 3:
274983/274983 [==============================] - 2s 9us/step
0.035293090845941046



The output remains somewhat same if I use adasyn instead of SMOTE or change layers and activation functions. Please help me out.
Thanks in advance.









share







New contributor




Bhupesh_decoder is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    0












    $begingroup$


    I am new to deep learning. I have imbalanced class data. I used one hot encoding and scaling to preprocess my data. I have used adamoptimizer as optimizer function and sparse categorical crossentropy as my lass function. The model always gives high accuracy on one class with very low accuracy on other classes. Here is my code:



    `



    ===============separating test data according to classes=================



    data_test = data_final[data_final.YEAR.isin(2018)]
    data_test_0 = data_test[data_test['DELAY_CLASS']==0]
    test_labels_0 = data_test_0.pop('DELAY_CLASS')
    data_test_1 = data_test[data_test['DELAY_CLASS']==1]
    test_labels_1 = data_test_1.pop('DELAY_CLASS')
    data_test_2 = data_test[data_test['DELAY_CLASS']==2]
    test_labels_2 = data_test_2.pop('DELAY_CLASS')
    data_test_3 = data_test[data_test['DELAY_CLASS']==3]
    test_labels_3 = data_test_3.pop('DELAY_CLASS')



    ============Extracting continuous columns from training data==============



    data_train = data_train[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
    'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
    'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



    ============Extracting continuous columns from testing data==============



    data_test = data_test[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
    'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
    'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



    print("reached here")



    ==========SMOTE================



    sm = SMOTE(random_state=2)
    ad = ADASYN(random_state=2)
    data_train, train_labels = sm.fit_sample(data_train, train_labels)



    data_train = pd.DataFrame(data_train)
    data_train = data_train.rename(columns = {0:'MONTH',1:'DAY_OF_MONTH',2:'DAY_OF_WEEK',3:'Dep_Hour',
    4:'Arr_Hour', 5:'CRS_ELAPSED_TIME', 6:'DISTANCE',
    7:'traffic',8:'O_SurfaceTemperatureFahrenheit',9:'O_CloudCoveragePercent',
    10:'O_WindSpeedMph',11:'O_PrecipitationPreviousHourInches',12:'O_SnowfallInches',
    13:'D_SurfaceTemperatureFahrenheit',14:'D_CloudCoveragePercent',15:'D_WindSpeedMph',
    16:'D_PrecipitationPreviousHourInches',17:'D_SnowfallInches',18:'Bird_Strike'})



    ==================taking only continuous columns===================



    cols = ['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
    'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']



    ======================scaling=============================



    train_mean = data_train[cols].mean(axis=0)
    train_std = data_train[cols].std(axis=0)
    data_train[cols] = (data_train[cols] - train_mean) / train_std
    data_test[cols] = (data_test[cols] - train_mean) / train_std
    rain_labels = pd.Series(train_labels)



    =====taking continuous columns from test separated data========



    data_test_0 = data_test_0[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
    'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



    data_test_1 = data_test_1[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK','Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



    data_test_2 = data_test_2[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
    'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
    'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



    data_test_3 = data_test_3[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
    'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
    'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



    ===================================my model====================



    def build_model():
    model = keras.Sequential([
    layers.Dense(100, activation = 'sigmoid', input_shape=[len(data_train.keys())]),
    #layers.Dropout(0.5),
    layers.Dense(50, activation = 'softplus'),
    #layers.Dropout(0.3),
    layers.Dense(25, activation = 'sigmoid'),
    #layers.Dropout(0.2),
    layers.Dense(4, activation = 'softmax')
    ])



    model.compile(loss='sparse_categorical_crossentropy',#with binary crossentropy use sigmoid and 1 output neuron
    optimizer= tf.train.AdamOptimizer(0.001),
    metrics=['accuracy'])
    return model


    model = build_model()
    model.fit(data_train, train_labels, epochs=5, batch_size=128)



    test_loss, test_acc = model.evaluate(data_test_0, test_labels_0)
    print(test_acc)
    test_loss, test_acc = model.evaluate(data_test_1, test_labels_1)
    print(test_acc)
    test_loss, test_acc = model.evaluate(data_test_2, test_labels_2)
    print(test_acc)
    test_loss, test_acc = model.evaluate(data_test_3, test_labels_3)
    print(test_acc)`



    The training data is flights data of 2016 and 2017 and testing data is of 2018. I have separated classes from testing data to see the class wise accuracy of testing data.



    The output is:
    Class 0:
    44929/44929 [==============================] - 1s 12us/step
    0.027710387500278218
    Class 1:
    10668/10668 [==============================] - 0s 11us/step
    0.015935508061492312
    Class 2:
    33204/33204 [==============================] - 0s 9us/step
    0.8956149861318866
    Class 3:
    274983/274983 [==============================] - 2s 9us/step
    0.035293090845941046



    The output remains somewhat same if I use adasyn instead of SMOTE or change layers and activation functions. Please help me out.
    Thanks in advance.









    share







    New contributor




    Bhupesh_decoder is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      0












      0








      0





      $begingroup$


      I am new to deep learning. I have imbalanced class data. I used one hot encoding and scaling to preprocess my data. I have used adamoptimizer as optimizer function and sparse categorical crossentropy as my lass function. The model always gives high accuracy on one class with very low accuracy on other classes. Here is my code:



      `



      ===============separating test data according to classes=================



      data_test = data_final[data_final.YEAR.isin(2018)]
      data_test_0 = data_test[data_test['DELAY_CLASS']==0]
      test_labels_0 = data_test_0.pop('DELAY_CLASS')
      data_test_1 = data_test[data_test['DELAY_CLASS']==1]
      test_labels_1 = data_test_1.pop('DELAY_CLASS')
      data_test_2 = data_test[data_test['DELAY_CLASS']==2]
      test_labels_2 = data_test_2.pop('DELAY_CLASS')
      data_test_3 = data_test[data_test['DELAY_CLASS']==3]
      test_labels_3 = data_test_3.pop('DELAY_CLASS')



      ============Extracting continuous columns from training data==============



      data_train = data_train[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
      'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
      'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



      ============Extracting continuous columns from testing data==============



      data_test = data_test[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
      'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
      'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



      print("reached here")



      ==========SMOTE================



      sm = SMOTE(random_state=2)
      ad = ADASYN(random_state=2)
      data_train, train_labels = sm.fit_sample(data_train, train_labels)



      data_train = pd.DataFrame(data_train)
      data_train = data_train.rename(columns = {0:'MONTH',1:'DAY_OF_MONTH',2:'DAY_OF_WEEK',3:'Dep_Hour',
      4:'Arr_Hour', 5:'CRS_ELAPSED_TIME', 6:'DISTANCE',
      7:'traffic',8:'O_SurfaceTemperatureFahrenheit',9:'O_CloudCoveragePercent',
      10:'O_WindSpeedMph',11:'O_PrecipitationPreviousHourInches',12:'O_SnowfallInches',
      13:'D_SurfaceTemperatureFahrenheit',14:'D_CloudCoveragePercent',15:'D_WindSpeedMph',
      16:'D_PrecipitationPreviousHourInches',17:'D_SnowfallInches',18:'Bird_Strike'})



      ==================taking only continuous columns===================



      cols = ['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
      'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']



      ======================scaling=============================



      train_mean = data_train[cols].mean(axis=0)
      train_std = data_train[cols].std(axis=0)
      data_train[cols] = (data_train[cols] - train_mean) / train_std
      data_test[cols] = (data_test[cols] - train_mean) / train_std
      rain_labels = pd.Series(train_labels)



      =====taking continuous columns from test separated data========



      data_test_0 = data_test_0[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
      'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



      data_test_1 = data_test_1[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK','Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



      data_test_2 = data_test_2[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
      'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
      'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



      data_test_3 = data_test_3[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
      'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
      'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



      ===================================my model====================



      def build_model():
      model = keras.Sequential([
      layers.Dense(100, activation = 'sigmoid', input_shape=[len(data_train.keys())]),
      #layers.Dropout(0.5),
      layers.Dense(50, activation = 'softplus'),
      #layers.Dropout(0.3),
      layers.Dense(25, activation = 'sigmoid'),
      #layers.Dropout(0.2),
      layers.Dense(4, activation = 'softmax')
      ])



      model.compile(loss='sparse_categorical_crossentropy',#with binary crossentropy use sigmoid and 1 output neuron
      optimizer= tf.train.AdamOptimizer(0.001),
      metrics=['accuracy'])
      return model


      model = build_model()
      model.fit(data_train, train_labels, epochs=5, batch_size=128)



      test_loss, test_acc = model.evaluate(data_test_0, test_labels_0)
      print(test_acc)
      test_loss, test_acc = model.evaluate(data_test_1, test_labels_1)
      print(test_acc)
      test_loss, test_acc = model.evaluate(data_test_2, test_labels_2)
      print(test_acc)
      test_loss, test_acc = model.evaluate(data_test_3, test_labels_3)
      print(test_acc)`



      The training data is flights data of 2016 and 2017 and testing data is of 2018. I have separated classes from testing data to see the class wise accuracy of testing data.



      The output is:
      Class 0:
      44929/44929 [==============================] - 1s 12us/step
      0.027710387500278218
      Class 1:
      10668/10668 [==============================] - 0s 11us/step
      0.015935508061492312
      Class 2:
      33204/33204 [==============================] - 0s 9us/step
      0.8956149861318866
      Class 3:
      274983/274983 [==============================] - 2s 9us/step
      0.035293090845941046



      The output remains somewhat same if I use adasyn instead of SMOTE or change layers and activation functions. Please help me out.
      Thanks in advance.









      share







      New contributor




      Bhupesh_decoder is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I am new to deep learning. I have imbalanced class data. I used one hot encoding and scaling to preprocess my data. I have used adamoptimizer as optimizer function and sparse categorical crossentropy as my lass function. The model always gives high accuracy on one class with very low accuracy on other classes. Here is my code:



      `



      ===============separating test data according to classes=================



      data_test = data_final[data_final.YEAR.isin(2018)]
      data_test_0 = data_test[data_test['DELAY_CLASS']==0]
      test_labels_0 = data_test_0.pop('DELAY_CLASS')
      data_test_1 = data_test[data_test['DELAY_CLASS']==1]
      test_labels_1 = data_test_1.pop('DELAY_CLASS')
      data_test_2 = data_test[data_test['DELAY_CLASS']==2]
      test_labels_2 = data_test_2.pop('DELAY_CLASS')
      data_test_3 = data_test[data_test['DELAY_CLASS']==3]
      test_labels_3 = data_test_3.pop('DELAY_CLASS')



      ============Extracting continuous columns from training data==============



      data_train = data_train[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
      'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
      'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



      ============Extracting continuous columns from testing data==============



      data_test = data_test[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
      'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
      'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



      print("reached here")



      ==========SMOTE================



      sm = SMOTE(random_state=2)
      ad = ADASYN(random_state=2)
      data_train, train_labels = sm.fit_sample(data_train, train_labels)



      data_train = pd.DataFrame(data_train)
      data_train = data_train.rename(columns = {0:'MONTH',1:'DAY_OF_MONTH',2:'DAY_OF_WEEK',3:'Dep_Hour',
      4:'Arr_Hour', 5:'CRS_ELAPSED_TIME', 6:'DISTANCE',
      7:'traffic',8:'O_SurfaceTemperatureFahrenheit',9:'O_CloudCoveragePercent',
      10:'O_WindSpeedMph',11:'O_PrecipitationPreviousHourInches',12:'O_SnowfallInches',
      13:'D_SurfaceTemperatureFahrenheit',14:'D_CloudCoveragePercent',15:'D_WindSpeedMph',
      16:'D_PrecipitationPreviousHourInches',17:'D_SnowfallInches',18:'Bird_Strike'})



      ==================taking only continuous columns===================



      cols = ['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
      'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']



      ======================scaling=============================



      train_mean = data_train[cols].mean(axis=0)
      train_std = data_train[cols].std(axis=0)
      data_train[cols] = (data_train[cols] - train_mean) / train_std
      data_test[cols] = (data_test[cols] - train_mean) / train_std
      rain_labels = pd.Series(train_labels)



      =====taking continuous columns from test separated data========



      data_test_0 = data_test_0[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
      'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



      data_test_1 = data_test_1[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK','Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



      data_test_2 = data_test_2[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
      'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
      'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



      data_test_3 = data_test_3[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
      'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
      'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]



      ===================================my model====================



      def build_model():
      model = keras.Sequential([
      layers.Dense(100, activation = 'sigmoid', input_shape=[len(data_train.keys())]),
      #layers.Dropout(0.5),
      layers.Dense(50, activation = 'softplus'),
      #layers.Dropout(0.3),
      layers.Dense(25, activation = 'sigmoid'),
      #layers.Dropout(0.2),
      layers.Dense(4, activation = 'softmax')
      ])



      model.compile(loss='sparse_categorical_crossentropy',#with binary crossentropy use sigmoid and 1 output neuron
      optimizer= tf.train.AdamOptimizer(0.001),
      metrics=['accuracy'])
      return model


      model = build_model()
      model.fit(data_train, train_labels, epochs=5, batch_size=128)



      test_loss, test_acc = model.evaluate(data_test_0, test_labels_0)
      print(test_acc)
      test_loss, test_acc = model.evaluate(data_test_1, test_labels_1)
      print(test_acc)
      test_loss, test_acc = model.evaluate(data_test_2, test_labels_2)
      print(test_acc)
      test_loss, test_acc = model.evaluate(data_test_3, test_labels_3)
      print(test_acc)`



      The training data is flights data of 2016 and 2017 and testing data is of 2018. I have separated classes from testing data to see the class wise accuracy of testing data.



      The output is:
      Class 0:
      44929/44929 [==============================] - 1s 12us/step
      0.027710387500278218
      Class 1:
      10668/10668 [==============================] - 0s 11us/step
      0.015935508061492312
      Class 2:
      33204/33204 [==============================] - 0s 9us/step
      0.8956149861318866
      Class 3:
      274983/274983 [==============================] - 2s 9us/step
      0.035293090845941046



      The output remains somewhat same if I use adasyn instead of SMOTE or change layers and activation functions. Please help me out.
      Thanks in advance.







      deep-learning multiclass-classification mlp smote imbalanced-learn





      share







      New contributor




      Bhupesh_decoder is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.










      share







      New contributor




      Bhupesh_decoder is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      share



      share






      New contributor




      Bhupesh_decoder is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 2 mins ago









      Bhupesh_decoderBhupesh_decoder

      1




      1




      New contributor




      Bhupesh_decoder is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Bhupesh_decoder is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Bhupesh_decoder is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          0






          active

          oldest

          votes












          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "557"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });






          Bhupesh_decoder is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49454%2fdeep-learningmlp-on-multiclass-classification-model-learning-only-one-class%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          Bhupesh_decoder is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          Bhupesh_decoder is a new contributor. Be nice, and check out our Code of Conduct.













          Bhupesh_decoder is a new contributor. Be nice, and check out our Code of Conduct.












          Bhupesh_decoder is a new contributor. Be nice, and check out our Code of Conduct.
















          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49454%2fdeep-learningmlp-on-multiclass-classification-model-learning-only-one-class%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ponta tanko

          Tantalo (mitologio)

          Erzsébet Schaár