Deep learning(MLP) on multiclass classification. Model learns only one class
$begingroup$
I am new to deep learning. I have imbalanced class data. I used one hot encoding and scaling to preprocess my data. I have used adamoptimizer as optimizer function and sparse categorical crossentropy as my lass function. The model always gives high accuracy on one class with very low accuracy on other classes. Here is my code:
`
#separating test data according to classes
data_test = data_final[data_final.YEAR.isin(2018)]
data_test_0 = data_test[data_test['DELAY_CLASS']==0]
test_labels_0 = data_test_0.pop('DELAY_CLASS')
data_test_1 = data_test[data_test['DELAY_CLASS']==1]
test_labels_1 = data_test_1.pop('DELAY_CLASS')
data_test_2 = data_test[data_test['DELAY_CLASS']==2]
test_labels_2 = data_test_2.pop('DELAY_CLASS')
data_test_3 = data_test[data_test['DELAY_CLASS']==3]
test_labels_3 = data_test_3.pop('DELAY_CLASS')
#Extracting continuous columns from training data
data_train = data_train[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
#Extracting continuous columns from testing data
data_test = data_test[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
print("reached here")
#SMOTE
sm = SMOTE(random_state=2)
ad = ADASYN(random_state=2)
data_train, train_labels = sm.fit_sample(data_train, train_labels)
data_train = pd.DataFrame(data_train)
data_train = data_train.rename(columns = {0:'MONTH',1:'DAY_OF_MONTH',2:'DAY_OF_WEEK',3:'Dep_Hour',
4:'Arr_Hour', 5:'CRS_ELAPSED_TIME', 6:'DISTANCE',
7:'traffic',8:'O_SurfaceTemperatureFahrenheit',9:'O_CloudCoveragePercent',
10:'O_WindSpeedMph',11:'O_PrecipitationPreviousHourInches',12:'O_SnowfallInches',
13:'D_SurfaceTemperatureFahrenheit',14:'D_CloudCoveragePercent',15:'D_WindSpeedMph',
16:'D_PrecipitationPreviousHourInches',17:'D_SnowfallInches',18:'Bird_Strike'})
#taking only continuous columns
cols = ['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']
#scaling
train_mean = data_train[cols].mean(axis=0)
train_std = data_train[cols].std(axis=0)
data_train[cols] = (data_train[cols] - train_mean) / train_std
data_test[cols] = (data_test[cols] - train_mean) / train_std
rain_labels = pd.Series(train_labels)
#taking continuous columns from test separated data
data_test_0 = data_test_0[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
data_test_1 = data_test_1[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK','Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
data_test_2 = data_test_2[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
data_test_3 = data_test_3[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
#my model
def build_model():
model = keras.Sequential([
layers.Dense(100, activation = 'sigmoid', input_shape=[len(data_train.keys())]),
#layers.Dropout(0.5),
layers.Dense(50, activation = 'softplus'),
#layers.Dropout(0.3),
layers.Dense(25, activation = 'sigmoid'),
#layers.Dropout(0.2),
layers.Dense(4, activation = 'softmax')
])
model.compile(loss='sparse_categorical_crossentropy',#with binary crossentropy use sigmoid and 1 output neuron
optimizer= tf.train.AdamOptimizer(0.001),
metrics=['accuracy'])
return model
model = build_model()
model.fit(data_train, train_labels, epochs=5, batch_size=128)
test_loss, test_acc = model.evaluate(data_test_0, test_labels_0)
print(test_acc)
test_loss, test_acc = model.evaluate(data_test_1, test_labels_1)
print(test_acc)
test_loss, test_acc = model.evaluate(data_test_2, test_labels_2)
print(test_acc)
test_loss, test_acc = model.evaluate(data_test_3, test_labels_3)
print(test_acc)
`
The training data is flights data of 2016 and 2017 and testing data is of 2018. I have separated classes from testing data to see the class wise accuracy of testing data.
The output is:
Class 0:
44929/44929 [==============================] - 1s 12us/step
0.027710387500278218
Class 1:
10668/10668 [==============================] - 0s 11us/step
0.015935508061492312
Class 2:
33204/33204 [==============================] - 0s 9us/step
0.8956149861318866
Class 3:
274983/274983 [==============================] - 2s 9us/step
0.035293090845941046
The output remains somewhat same if I use adasyn instead of SMOTE or change layers and activation functions. Please help me out.
Thanks in advance.
deep-learning multiclass-classification mlp smote imbalanced-learn
New contributor
$endgroup$
add a comment |
$begingroup$
I am new to deep learning. I have imbalanced class data. I used one hot encoding and scaling to preprocess my data. I have used adamoptimizer as optimizer function and sparse categorical crossentropy as my lass function. The model always gives high accuracy on one class with very low accuracy on other classes. Here is my code:
`
#separating test data according to classes
data_test = data_final[data_final.YEAR.isin(2018)]
data_test_0 = data_test[data_test['DELAY_CLASS']==0]
test_labels_0 = data_test_0.pop('DELAY_CLASS')
data_test_1 = data_test[data_test['DELAY_CLASS']==1]
test_labels_1 = data_test_1.pop('DELAY_CLASS')
data_test_2 = data_test[data_test['DELAY_CLASS']==2]
test_labels_2 = data_test_2.pop('DELAY_CLASS')
data_test_3 = data_test[data_test['DELAY_CLASS']==3]
test_labels_3 = data_test_3.pop('DELAY_CLASS')
#Extracting continuous columns from training data
data_train = data_train[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
#Extracting continuous columns from testing data
data_test = data_test[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
print("reached here")
#SMOTE
sm = SMOTE(random_state=2)
ad = ADASYN(random_state=2)
data_train, train_labels = sm.fit_sample(data_train, train_labels)
data_train = pd.DataFrame(data_train)
data_train = data_train.rename(columns = {0:'MONTH',1:'DAY_OF_MONTH',2:'DAY_OF_WEEK',3:'Dep_Hour',
4:'Arr_Hour', 5:'CRS_ELAPSED_TIME', 6:'DISTANCE',
7:'traffic',8:'O_SurfaceTemperatureFahrenheit',9:'O_CloudCoveragePercent',
10:'O_WindSpeedMph',11:'O_PrecipitationPreviousHourInches',12:'O_SnowfallInches',
13:'D_SurfaceTemperatureFahrenheit',14:'D_CloudCoveragePercent',15:'D_WindSpeedMph',
16:'D_PrecipitationPreviousHourInches',17:'D_SnowfallInches',18:'Bird_Strike'})
#taking only continuous columns
cols = ['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']
#scaling
train_mean = data_train[cols].mean(axis=0)
train_std = data_train[cols].std(axis=0)
data_train[cols] = (data_train[cols] - train_mean) / train_std
data_test[cols] = (data_test[cols] - train_mean) / train_std
rain_labels = pd.Series(train_labels)
#taking continuous columns from test separated data
data_test_0 = data_test_0[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
data_test_1 = data_test_1[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK','Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
data_test_2 = data_test_2[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
data_test_3 = data_test_3[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
#my model
def build_model():
model = keras.Sequential([
layers.Dense(100, activation = 'sigmoid', input_shape=[len(data_train.keys())]),
#layers.Dropout(0.5),
layers.Dense(50, activation = 'softplus'),
#layers.Dropout(0.3),
layers.Dense(25, activation = 'sigmoid'),
#layers.Dropout(0.2),
layers.Dense(4, activation = 'softmax')
])
model.compile(loss='sparse_categorical_crossentropy',#with binary crossentropy use sigmoid and 1 output neuron
optimizer= tf.train.AdamOptimizer(0.001),
metrics=['accuracy'])
return model
model = build_model()
model.fit(data_train, train_labels, epochs=5, batch_size=128)
test_loss, test_acc = model.evaluate(data_test_0, test_labels_0)
print(test_acc)
test_loss, test_acc = model.evaluate(data_test_1, test_labels_1)
print(test_acc)
test_loss, test_acc = model.evaluate(data_test_2, test_labels_2)
print(test_acc)
test_loss, test_acc = model.evaluate(data_test_3, test_labels_3)
print(test_acc)
`
The training data is flights data of 2016 and 2017 and testing data is of 2018. I have separated classes from testing data to see the class wise accuracy of testing data.
The output is:
Class 0:
44929/44929 [==============================] - 1s 12us/step
0.027710387500278218
Class 1:
10668/10668 [==============================] - 0s 11us/step
0.015935508061492312
Class 2:
33204/33204 [==============================] - 0s 9us/step
0.8956149861318866
Class 3:
274983/274983 [==============================] - 2s 9us/step
0.035293090845941046
The output remains somewhat same if I use adasyn instead of SMOTE or change layers and activation functions. Please help me out.
Thanks in advance.
deep-learning multiclass-classification mlp smote imbalanced-learn
New contributor
$endgroup$
add a comment |
$begingroup$
I am new to deep learning. I have imbalanced class data. I used one hot encoding and scaling to preprocess my data. I have used adamoptimizer as optimizer function and sparse categorical crossentropy as my lass function. The model always gives high accuracy on one class with very low accuracy on other classes. Here is my code:
`
#separating test data according to classes
data_test = data_final[data_final.YEAR.isin(2018)]
data_test_0 = data_test[data_test['DELAY_CLASS']==0]
test_labels_0 = data_test_0.pop('DELAY_CLASS')
data_test_1 = data_test[data_test['DELAY_CLASS']==1]
test_labels_1 = data_test_1.pop('DELAY_CLASS')
data_test_2 = data_test[data_test['DELAY_CLASS']==2]
test_labels_2 = data_test_2.pop('DELAY_CLASS')
data_test_3 = data_test[data_test['DELAY_CLASS']==3]
test_labels_3 = data_test_3.pop('DELAY_CLASS')
#Extracting continuous columns from training data
data_train = data_train[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
#Extracting continuous columns from testing data
data_test = data_test[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
print("reached here")
#SMOTE
sm = SMOTE(random_state=2)
ad = ADASYN(random_state=2)
data_train, train_labels = sm.fit_sample(data_train, train_labels)
data_train = pd.DataFrame(data_train)
data_train = data_train.rename(columns = {0:'MONTH',1:'DAY_OF_MONTH',2:'DAY_OF_WEEK',3:'Dep_Hour',
4:'Arr_Hour', 5:'CRS_ELAPSED_TIME', 6:'DISTANCE',
7:'traffic',8:'O_SurfaceTemperatureFahrenheit',9:'O_CloudCoveragePercent',
10:'O_WindSpeedMph',11:'O_PrecipitationPreviousHourInches',12:'O_SnowfallInches',
13:'D_SurfaceTemperatureFahrenheit',14:'D_CloudCoveragePercent',15:'D_WindSpeedMph',
16:'D_PrecipitationPreviousHourInches',17:'D_SnowfallInches',18:'Bird_Strike'})
#taking only continuous columns
cols = ['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']
#scaling
train_mean = data_train[cols].mean(axis=0)
train_std = data_train[cols].std(axis=0)
data_train[cols] = (data_train[cols] - train_mean) / train_std
data_test[cols] = (data_test[cols] - train_mean) / train_std
rain_labels = pd.Series(train_labels)
#taking continuous columns from test separated data
data_test_0 = data_test_0[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
data_test_1 = data_test_1[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK','Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
data_test_2 = data_test_2[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
data_test_3 = data_test_3[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
#my model
def build_model():
model = keras.Sequential([
layers.Dense(100, activation = 'sigmoid', input_shape=[len(data_train.keys())]),
#layers.Dropout(0.5),
layers.Dense(50, activation = 'softplus'),
#layers.Dropout(0.3),
layers.Dense(25, activation = 'sigmoid'),
#layers.Dropout(0.2),
layers.Dense(4, activation = 'softmax')
])
model.compile(loss='sparse_categorical_crossentropy',#with binary crossentropy use sigmoid and 1 output neuron
optimizer= tf.train.AdamOptimizer(0.001),
metrics=['accuracy'])
return model
model = build_model()
model.fit(data_train, train_labels, epochs=5, batch_size=128)
test_loss, test_acc = model.evaluate(data_test_0, test_labels_0)
print(test_acc)
test_loss, test_acc = model.evaluate(data_test_1, test_labels_1)
print(test_acc)
test_loss, test_acc = model.evaluate(data_test_2, test_labels_2)
print(test_acc)
test_loss, test_acc = model.evaluate(data_test_3, test_labels_3)
print(test_acc)
`
The training data is flights data of 2016 and 2017 and testing data is of 2018. I have separated classes from testing data to see the class wise accuracy of testing data.
The output is:
Class 0:
44929/44929 [==============================] - 1s 12us/step
0.027710387500278218
Class 1:
10668/10668 [==============================] - 0s 11us/step
0.015935508061492312
Class 2:
33204/33204 [==============================] - 0s 9us/step
0.8956149861318866
Class 3:
274983/274983 [==============================] - 2s 9us/step
0.035293090845941046
The output remains somewhat same if I use adasyn instead of SMOTE or change layers and activation functions. Please help me out.
Thanks in advance.
deep-learning multiclass-classification mlp smote imbalanced-learn
New contributor
$endgroup$
I am new to deep learning. I have imbalanced class data. I used one hot encoding and scaling to preprocess my data. I have used adamoptimizer as optimizer function and sparse categorical crossentropy as my lass function. The model always gives high accuracy on one class with very low accuracy on other classes. Here is my code:
`
#separating test data according to classes
data_test = data_final[data_final.YEAR.isin(2018)]
data_test_0 = data_test[data_test['DELAY_CLASS']==0]
test_labels_0 = data_test_0.pop('DELAY_CLASS')
data_test_1 = data_test[data_test['DELAY_CLASS']==1]
test_labels_1 = data_test_1.pop('DELAY_CLASS')
data_test_2 = data_test[data_test['DELAY_CLASS']==2]
test_labels_2 = data_test_2.pop('DELAY_CLASS')
data_test_3 = data_test[data_test['DELAY_CLASS']==3]
test_labels_3 = data_test_3.pop('DELAY_CLASS')
#Extracting continuous columns from training data
data_train = data_train[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
#Extracting continuous columns from testing data
data_test = data_test[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
print("reached here")
#SMOTE
sm = SMOTE(random_state=2)
ad = ADASYN(random_state=2)
data_train, train_labels = sm.fit_sample(data_train, train_labels)
data_train = pd.DataFrame(data_train)
data_train = data_train.rename(columns = {0:'MONTH',1:'DAY_OF_MONTH',2:'DAY_OF_WEEK',3:'Dep_Hour',
4:'Arr_Hour', 5:'CRS_ELAPSED_TIME', 6:'DISTANCE',
7:'traffic',8:'O_SurfaceTemperatureFahrenheit',9:'O_CloudCoveragePercent',
10:'O_WindSpeedMph',11:'O_PrecipitationPreviousHourInches',12:'O_SnowfallInches',
13:'D_SurfaceTemperatureFahrenheit',14:'D_CloudCoveragePercent',15:'D_WindSpeedMph',
16:'D_PrecipitationPreviousHourInches',17:'D_SnowfallInches',18:'Bird_Strike'})
#taking only continuous columns
cols = ['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']
#scaling
train_mean = data_train[cols].mean(axis=0)
train_std = data_train[cols].std(axis=0)
data_train[cols] = (data_train[cols] - train_mean) / train_std
data_test[cols] = (data_test[cols] - train_mean) / train_std
rain_labels = pd.Series(train_labels)
#taking continuous columns from test separated data
data_test_0 = data_test_0[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
data_test_1 = data_test_1[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK','Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit','D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
data_test_2 = data_test_2[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
data_test_3 = data_test_3[['MONTH','DAY_OF_MONTH','DAY_OF_WEEK',
'Dep_Hour','Arr_Hour','CRS_ELAPSED_TIME','DISTANCE','traffic','O_SurfaceTemperatureFahrenheit','O_CloudCoveragePercent','O_WindSpeedMph','O_PrecipitationPreviousHourInches','O_SnowfallInches','D_SurfaceTemperatureFahrenheit',
'D_CloudCoveragePercent','D_WindSpeedMph','D_PrecipitationPreviousHourInches','D_SnowfallInches','Bird_Strike']]
#my model
def build_model():
model = keras.Sequential([
layers.Dense(100, activation = 'sigmoid', input_shape=[len(data_train.keys())]),
#layers.Dropout(0.5),
layers.Dense(50, activation = 'softplus'),
#layers.Dropout(0.3),
layers.Dense(25, activation = 'sigmoid'),
#layers.Dropout(0.2),
layers.Dense(4, activation = 'softmax')
])
model.compile(loss='sparse_categorical_crossentropy',#with binary crossentropy use sigmoid and 1 output neuron
optimizer= tf.train.AdamOptimizer(0.001),
metrics=['accuracy'])
return model
model = build_model()
model.fit(data_train, train_labels, epochs=5, batch_size=128)
test_loss, test_acc = model.evaluate(data_test_0, test_labels_0)
print(test_acc)
test_loss, test_acc = model.evaluate(data_test_1, test_labels_1)
print(test_acc)
test_loss, test_acc = model.evaluate(data_test_2, test_labels_2)
print(test_acc)
test_loss, test_acc = model.evaluate(data_test_3, test_labels_3)
print(test_acc)
`
The training data is flights data of 2016 and 2017 and testing data is of 2018. I have separated classes from testing data to see the class wise accuracy of testing data.
The output is:
Class 0:
44929/44929 [==============================] - 1s 12us/step
0.027710387500278218
Class 1:
10668/10668 [==============================] - 0s 11us/step
0.015935508061492312
Class 2:
33204/33204 [==============================] - 0s 9us/step
0.8956149861318866
Class 3:
274983/274983 [==============================] - 2s 9us/step
0.035293090845941046
The output remains somewhat same if I use adasyn instead of SMOTE or change layers and activation functions. Please help me out.
Thanks in advance.
deep-learning multiclass-classification mlp smote imbalanced-learn
deep-learning multiclass-classification mlp smote imbalanced-learn
New contributor
New contributor
New contributor
asked 5 mins ago
Bhupesh_decoderBhupesh_decoder
1
1
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Bhupesh_decoder is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49454%2fdeep-learningmlp-on-multiclass-classification-model-learns-only-one-class%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Bhupesh_decoder is a new contributor. Be nice, and check out our Code of Conduct.
Bhupesh_decoder is a new contributor. Be nice, and check out our Code of Conduct.
Bhupesh_decoder is a new contributor. Be nice, and check out our Code of Conduct.
Bhupesh_decoder is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49454%2fdeep-learningmlp-on-multiclass-classification-model-learns-only-one-class%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown