Fast and Listable Piecewise function
$begingroup$
I am writing a simulation where I have an array with ten columns and on the order of millions of rows, for which I need to iterate on the order of ten thousand times, making computation time a major issue. At the moment I am using the Map function to apply calculations on every row (every row is independent of each other), but I realized that using the listability of the basic functions is significantly faster.
However, my problem is that I have one piecewise function that is not listable. I also cannot define a function outside of the calculations (as f[x_]:=...), since that incurs a huge bottleneck (factor ~20 slower computations). I am therefore looking for any tips or advice on how to solve this.
As an example, this is one of the calculations that are performed:
Q=0.18;
Qfactor=1.*10^-10;
Qspace=0.135;
sigma2289=7.83717;
Qspace17sigma2=0.0292835;
sigma17=3.7995;
sigma=1.64676;
TWOPI=2.*Pi;
Map[TWOPI*(Q + #[[7]]*Qfactor -
If[#[[5]]^2 + #[[6]]^2 < sigma2289,
Qspace17sigma2*Sqrt[#[[5]]^2 + #[[6]]^2],
Qspace/(Sqrt[#[[5]]^2 + #[[6]]^2] - sigma17)/sigma]) &,
particleArray];
My issue is this part:
If[#[[5]]^2 + #[[6]]^2 < sigma2289,
Qspace17sigma2*Sqrt[#[[5]]^2 + #[[6]]^2],
Qspace/(Sqrt[#[[5]]^2 + #[[6]]^2] - sigma17)/sigma]
The conditional part of that function appears to not be listable. However, if I remove this and compare the computational times of the Map version, versus the Listability version, you can see that there is a significant improvement:
in: AbsoluteTiming[particleArray[[All, 10]] =
Map[TWOPI*(Q + #[[3]]*Qfactor -
Qspace17sigma2*Sqrt[#[[1]]^2 + #[[2]]^2]) &, particleArray];]
out: (0.14621, Null)
in: AbsoluteTiming[particleArray[[All, 8]] =
TWOPI*(Q + particleArray[[All, 3]]*Qfactor -
Qspace17sigma2*Sqrt[particleArray[[All, 1]]^2 + particleArray[[All, 2]]^2]);]
out: (0.01042, Null)
You can generate particleArray using the following code, for testing:
heavyGaussian = MixtureDistribution[{0.75, 0.25},
{MultinormalDistribution[{0, 0}, {{1, 0}, {0, 1}}],
MultinormalDistribution[{0, 0}, {{1.8, 0}, {0, 1.8}}]}];
particleArray = ParallelTable[
Flatten[{RandomVariate[heavyGaussian],
RandomVariate[
MultinormalDistribution[{0, 3.14159}, {{9.*10^-8,0},{0,0.0194882}}]],
0, 0, 0, 0, 0, 0}], {x, 1, 100000}];
particleArray[[All, 3]] *= 2.6*10^10;
I also have CUDA enabled and a decent GPU, so any tips related to that would also be appreciated.
performance-tuning piecewise array map listable
$endgroup$
add a comment |
$begingroup$
I am writing a simulation where I have an array with ten columns and on the order of millions of rows, for which I need to iterate on the order of ten thousand times, making computation time a major issue. At the moment I am using the Map function to apply calculations on every row (every row is independent of each other), but I realized that using the listability of the basic functions is significantly faster.
However, my problem is that I have one piecewise function that is not listable. I also cannot define a function outside of the calculations (as f[x_]:=...), since that incurs a huge bottleneck (factor ~20 slower computations). I am therefore looking for any tips or advice on how to solve this.
As an example, this is one of the calculations that are performed:
Q=0.18;
Qfactor=1.*10^-10;
Qspace=0.135;
sigma2289=7.83717;
Qspace17sigma2=0.0292835;
sigma17=3.7995;
sigma=1.64676;
TWOPI=2.*Pi;
Map[TWOPI*(Q + #[[7]]*Qfactor -
If[#[[5]]^2 + #[[6]]^2 < sigma2289,
Qspace17sigma2*Sqrt[#[[5]]^2 + #[[6]]^2],
Qspace/(Sqrt[#[[5]]^2 + #[[6]]^2] - sigma17)/sigma]) &,
particleArray];
My issue is this part:
If[#[[5]]^2 + #[[6]]^2 < sigma2289,
Qspace17sigma2*Sqrt[#[[5]]^2 + #[[6]]^2],
Qspace/(Sqrt[#[[5]]^2 + #[[6]]^2] - sigma17)/sigma]
The conditional part of that function appears to not be listable. However, if I remove this and compare the computational times of the Map version, versus the Listability version, you can see that there is a significant improvement:
in: AbsoluteTiming[particleArray[[All, 10]] =
Map[TWOPI*(Q + #[[3]]*Qfactor -
Qspace17sigma2*Sqrt[#[[1]]^2 + #[[2]]^2]) &, particleArray];]
out: (0.14621, Null)
in: AbsoluteTiming[particleArray[[All, 8]] =
TWOPI*(Q + particleArray[[All, 3]]*Qfactor -
Qspace17sigma2*Sqrt[particleArray[[All, 1]]^2 + particleArray[[All, 2]]^2]);]
out: (0.01042, Null)
You can generate particleArray using the following code, for testing:
heavyGaussian = MixtureDistribution[{0.75, 0.25},
{MultinormalDistribution[{0, 0}, {{1, 0}, {0, 1}}],
MultinormalDistribution[{0, 0}, {{1.8, 0}, {0, 1.8}}]}];
particleArray = ParallelTable[
Flatten[{RandomVariate[heavyGaussian],
RandomVariate[
MultinormalDistribution[{0, 3.14159}, {{9.*10^-8,0},{0,0.0194882}}]],
0, 0, 0, 0, 0, 0}], {x, 1, 100000}];
particleArray[[All, 3]] *= 2.6*10^10;
I also have CUDA enabled and a decent GPU, so any tips related to that would also be appreciated.
performance-tuning piecewise array map listable
$endgroup$
1
$begingroup$
There’s a piecewise-to-unitstep converter in the Simplify context — something like PWToUnitStep. You can use PiecewiseExpand to convert If to Piecewise first if needed.
$endgroup$
– Michael E2
7 hours ago
add a comment |
$begingroup$
I am writing a simulation where I have an array with ten columns and on the order of millions of rows, for which I need to iterate on the order of ten thousand times, making computation time a major issue. At the moment I am using the Map function to apply calculations on every row (every row is independent of each other), but I realized that using the listability of the basic functions is significantly faster.
However, my problem is that I have one piecewise function that is not listable. I also cannot define a function outside of the calculations (as f[x_]:=...), since that incurs a huge bottleneck (factor ~20 slower computations). I am therefore looking for any tips or advice on how to solve this.
As an example, this is one of the calculations that are performed:
Q=0.18;
Qfactor=1.*10^-10;
Qspace=0.135;
sigma2289=7.83717;
Qspace17sigma2=0.0292835;
sigma17=3.7995;
sigma=1.64676;
TWOPI=2.*Pi;
Map[TWOPI*(Q + #[[7]]*Qfactor -
If[#[[5]]^2 + #[[6]]^2 < sigma2289,
Qspace17sigma2*Sqrt[#[[5]]^2 + #[[6]]^2],
Qspace/(Sqrt[#[[5]]^2 + #[[6]]^2] - sigma17)/sigma]) &,
particleArray];
My issue is this part:
If[#[[5]]^2 + #[[6]]^2 < sigma2289,
Qspace17sigma2*Sqrt[#[[5]]^2 + #[[6]]^2],
Qspace/(Sqrt[#[[5]]^2 + #[[6]]^2] - sigma17)/sigma]
The conditional part of that function appears to not be listable. However, if I remove this and compare the computational times of the Map version, versus the Listability version, you can see that there is a significant improvement:
in: AbsoluteTiming[particleArray[[All, 10]] =
Map[TWOPI*(Q + #[[3]]*Qfactor -
Qspace17sigma2*Sqrt[#[[1]]^2 + #[[2]]^2]) &, particleArray];]
out: (0.14621, Null)
in: AbsoluteTiming[particleArray[[All, 8]] =
TWOPI*(Q + particleArray[[All, 3]]*Qfactor -
Qspace17sigma2*Sqrt[particleArray[[All, 1]]^2 + particleArray[[All, 2]]^2]);]
out: (0.01042, Null)
You can generate particleArray using the following code, for testing:
heavyGaussian = MixtureDistribution[{0.75, 0.25},
{MultinormalDistribution[{0, 0}, {{1, 0}, {0, 1}}],
MultinormalDistribution[{0, 0}, {{1.8, 0}, {0, 1.8}}]}];
particleArray = ParallelTable[
Flatten[{RandomVariate[heavyGaussian],
RandomVariate[
MultinormalDistribution[{0, 3.14159}, {{9.*10^-8,0},{0,0.0194882}}]],
0, 0, 0, 0, 0, 0}], {x, 1, 100000}];
particleArray[[All, 3]] *= 2.6*10^10;
I also have CUDA enabled and a decent GPU, so any tips related to that would also be appreciated.
performance-tuning piecewise array map listable
$endgroup$
I am writing a simulation where I have an array with ten columns and on the order of millions of rows, for which I need to iterate on the order of ten thousand times, making computation time a major issue. At the moment I am using the Map function to apply calculations on every row (every row is independent of each other), but I realized that using the listability of the basic functions is significantly faster.
However, my problem is that I have one piecewise function that is not listable. I also cannot define a function outside of the calculations (as f[x_]:=...), since that incurs a huge bottleneck (factor ~20 slower computations). I am therefore looking for any tips or advice on how to solve this.
As an example, this is one of the calculations that are performed:
Q=0.18;
Qfactor=1.*10^-10;
Qspace=0.135;
sigma2289=7.83717;
Qspace17sigma2=0.0292835;
sigma17=3.7995;
sigma=1.64676;
TWOPI=2.*Pi;
Map[TWOPI*(Q + #[[7]]*Qfactor -
If[#[[5]]^2 + #[[6]]^2 < sigma2289,
Qspace17sigma2*Sqrt[#[[5]]^2 + #[[6]]^2],
Qspace/(Sqrt[#[[5]]^2 + #[[6]]^2] - sigma17)/sigma]) &,
particleArray];
My issue is this part:
If[#[[5]]^2 + #[[6]]^2 < sigma2289,
Qspace17sigma2*Sqrt[#[[5]]^2 + #[[6]]^2],
Qspace/(Sqrt[#[[5]]^2 + #[[6]]^2] - sigma17)/sigma]
The conditional part of that function appears to not be listable. However, if I remove this and compare the computational times of the Map version, versus the Listability version, you can see that there is a significant improvement:
in: AbsoluteTiming[particleArray[[All, 10]] =
Map[TWOPI*(Q + #[[3]]*Qfactor -
Qspace17sigma2*Sqrt[#[[1]]^2 + #[[2]]^2]) &, particleArray];]
out: (0.14621, Null)
in: AbsoluteTiming[particleArray[[All, 8]] =
TWOPI*(Q + particleArray[[All, 3]]*Qfactor -
Qspace17sigma2*Sqrt[particleArray[[All, 1]]^2 + particleArray[[All, 2]]^2]);]
out: (0.01042, Null)
You can generate particleArray using the following code, for testing:
heavyGaussian = MixtureDistribution[{0.75, 0.25},
{MultinormalDistribution[{0, 0}, {{1, 0}, {0, 1}}],
MultinormalDistribution[{0, 0}, {{1.8, 0}, {0, 1.8}}]}];
particleArray = ParallelTable[
Flatten[{RandomVariate[heavyGaussian],
RandomVariate[
MultinormalDistribution[{0, 3.14159}, {{9.*10^-8,0},{0,0.0194882}}]],
0, 0, 0, 0, 0, 0}], {x, 1, 100000}];
particleArray[[All, 3]] *= 2.6*10^10;
I also have CUDA enabled and a decent GPU, so any tips related to that would also be appreciated.
performance-tuning piecewise array map listable
performance-tuning piecewise array map listable
asked 8 hours ago
bjornbjorn
430313
430313
1
$begingroup$
There’s a piecewise-to-unitstep converter in the Simplify context — something like PWToUnitStep. You can use PiecewiseExpand to convert If to Piecewise first if needed.
$endgroup$
– Michael E2
7 hours ago
add a comment |
1
$begingroup$
There’s a piecewise-to-unitstep converter in the Simplify context — something like PWToUnitStep. You can use PiecewiseExpand to convert If to Piecewise first if needed.
$endgroup$
– Michael E2
7 hours ago
1
1
$begingroup$
There’s a piecewise-to-unitstep converter in the Simplify context — something like PWToUnitStep. You can use PiecewiseExpand to convert If to Piecewise first if needed.
$endgroup$
– Michael E2
7 hours ago
$begingroup$
There’s a piecewise-to-unitstep converter in the Simplify context — something like PWToUnitStep. You can use PiecewiseExpand to convert If to Piecewise first if needed.
$endgroup$
– Michael E2
7 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You may use Compile
as follows:
Q = 0.18;
Qfactor = 1.*10^-10;
Qspace = 0.135;
sigma2289 = 7.83717;
Qspace17sigma2 = 0.0292835;
sigma17 = 3.7995;
sigma = 1.64676;
TWOPI = 2.*Pi;
cf = With[{
TWOPI = TWOPI, Q = Q, Qfactor = Qfactor, Qspace = Qspace,
sigma = sigma, sigma17 = sigma17, sigma2289 = sigma2289,
Qspace17sigma2 = Qspace17sigma2},
Compile[{{X, _Real, 1}},
TWOPI*(Q + Compile`GetElement[X, 7]*Qfactor - If[
Compile`GetElement[X, 5]^2 + Compile`GetElement[X, 6]^2 <
sigma2289,
Qspace17sigma2 Sqrt[
Compile`GetElement[X, 5]^2 + Compile`GetElement[X, 6]^2],
Qspace/(Sqrt[
Compile`GetElement[X, 5]^2 + Compile`GetElement[X, 6]^2] -
sigma17)/sigma
]
),
CompilationTarget -> "C",
RuntimeAttributes -> {Listable},
Parallelization -> True,
RuntimeOptions -> "Speed"
]
]
And here is a speed comparison. First we have to generate particleArray
. Notice how I generate it: I use RandomVariate
with a second argument to produce many random numbers at once. Moreover, I use ConstantArray[0., {n, 6}]
to generate all the zero (as machine precision 0.
, not as eaxct 0
) and merge everything with Join[#,2]&
. This way, particleArray
is a packed array an can also be processed faster, in general. (The array woud be coerced to machine precision reals and packed when the CompiledFunction
cf
is applied to it anyways.)
n = 100000;
particleArray = Join[
RandomVariate[heavyGaussian, n],
RandomVariate[MultinormalDistribution[{0,3.14159}, {{9.*10^-8, 0}, {0, 0.0194882}}], n],
ConstantArray[0., {n, 6}],
2
]; // AbsoluteTiming // First
a = Map[
TWOPI*(Q + #[[7]]*Qfactor - If[
#[[5]]^2 + #[[6]]^2 < sigma2289,
Qspace17sigma2*Sqrt[#[[5]]^2 + #[[6]]^2],
Qspace/(Sqrt[#[[5]]^2 + #[[6]]^2] - sigma17)/sigma
]
) &, particleArray
]; // AbsoluteTiming // First
b = cf[particleArray]; // AbsoluteTiming // First
Max[Abs[a - b]]
0.020113
0.063061
0.003697
0.
$endgroup$
$begingroup$
This works perfectly, thank you!
$endgroup$
– bjorn
8 hours ago
3
$begingroup$
You're welcome. Notice that I gave also some hints on how to speed up the random number generation by a factor of 600...
$endgroup$
– Henrik Schumacher
8 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f191168%2ffast-and-listable-piecewise-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You may use Compile
as follows:
Q = 0.18;
Qfactor = 1.*10^-10;
Qspace = 0.135;
sigma2289 = 7.83717;
Qspace17sigma2 = 0.0292835;
sigma17 = 3.7995;
sigma = 1.64676;
TWOPI = 2.*Pi;
cf = With[{
TWOPI = TWOPI, Q = Q, Qfactor = Qfactor, Qspace = Qspace,
sigma = sigma, sigma17 = sigma17, sigma2289 = sigma2289,
Qspace17sigma2 = Qspace17sigma2},
Compile[{{X, _Real, 1}},
TWOPI*(Q + Compile`GetElement[X, 7]*Qfactor - If[
Compile`GetElement[X, 5]^2 + Compile`GetElement[X, 6]^2 <
sigma2289,
Qspace17sigma2 Sqrt[
Compile`GetElement[X, 5]^2 + Compile`GetElement[X, 6]^2],
Qspace/(Sqrt[
Compile`GetElement[X, 5]^2 + Compile`GetElement[X, 6]^2] -
sigma17)/sigma
]
),
CompilationTarget -> "C",
RuntimeAttributes -> {Listable},
Parallelization -> True,
RuntimeOptions -> "Speed"
]
]
And here is a speed comparison. First we have to generate particleArray
. Notice how I generate it: I use RandomVariate
with a second argument to produce many random numbers at once. Moreover, I use ConstantArray[0., {n, 6}]
to generate all the zero (as machine precision 0.
, not as eaxct 0
) and merge everything with Join[#,2]&
. This way, particleArray
is a packed array an can also be processed faster, in general. (The array woud be coerced to machine precision reals and packed when the CompiledFunction
cf
is applied to it anyways.)
n = 100000;
particleArray = Join[
RandomVariate[heavyGaussian, n],
RandomVariate[MultinormalDistribution[{0,3.14159}, {{9.*10^-8, 0}, {0, 0.0194882}}], n],
ConstantArray[0., {n, 6}],
2
]; // AbsoluteTiming // First
a = Map[
TWOPI*(Q + #[[7]]*Qfactor - If[
#[[5]]^2 + #[[6]]^2 < sigma2289,
Qspace17sigma2*Sqrt[#[[5]]^2 + #[[6]]^2],
Qspace/(Sqrt[#[[5]]^2 + #[[6]]^2] - sigma17)/sigma
]
) &, particleArray
]; // AbsoluteTiming // First
b = cf[particleArray]; // AbsoluteTiming // First
Max[Abs[a - b]]
0.020113
0.063061
0.003697
0.
$endgroup$
$begingroup$
This works perfectly, thank you!
$endgroup$
– bjorn
8 hours ago
3
$begingroup$
You're welcome. Notice that I gave also some hints on how to speed up the random number generation by a factor of 600...
$endgroup$
– Henrik Schumacher
8 hours ago
add a comment |
$begingroup$
You may use Compile
as follows:
Q = 0.18;
Qfactor = 1.*10^-10;
Qspace = 0.135;
sigma2289 = 7.83717;
Qspace17sigma2 = 0.0292835;
sigma17 = 3.7995;
sigma = 1.64676;
TWOPI = 2.*Pi;
cf = With[{
TWOPI = TWOPI, Q = Q, Qfactor = Qfactor, Qspace = Qspace,
sigma = sigma, sigma17 = sigma17, sigma2289 = sigma2289,
Qspace17sigma2 = Qspace17sigma2},
Compile[{{X, _Real, 1}},
TWOPI*(Q + Compile`GetElement[X, 7]*Qfactor - If[
Compile`GetElement[X, 5]^2 + Compile`GetElement[X, 6]^2 <
sigma2289,
Qspace17sigma2 Sqrt[
Compile`GetElement[X, 5]^2 + Compile`GetElement[X, 6]^2],
Qspace/(Sqrt[
Compile`GetElement[X, 5]^2 + Compile`GetElement[X, 6]^2] -
sigma17)/sigma
]
),
CompilationTarget -> "C",
RuntimeAttributes -> {Listable},
Parallelization -> True,
RuntimeOptions -> "Speed"
]
]
And here is a speed comparison. First we have to generate particleArray
. Notice how I generate it: I use RandomVariate
with a second argument to produce many random numbers at once. Moreover, I use ConstantArray[0., {n, 6}]
to generate all the zero (as machine precision 0.
, not as eaxct 0
) and merge everything with Join[#,2]&
. This way, particleArray
is a packed array an can also be processed faster, in general. (The array woud be coerced to machine precision reals and packed when the CompiledFunction
cf
is applied to it anyways.)
n = 100000;
particleArray = Join[
RandomVariate[heavyGaussian, n],
RandomVariate[MultinormalDistribution[{0,3.14159}, {{9.*10^-8, 0}, {0, 0.0194882}}], n],
ConstantArray[0., {n, 6}],
2
]; // AbsoluteTiming // First
a = Map[
TWOPI*(Q + #[[7]]*Qfactor - If[
#[[5]]^2 + #[[6]]^2 < sigma2289,
Qspace17sigma2*Sqrt[#[[5]]^2 + #[[6]]^2],
Qspace/(Sqrt[#[[5]]^2 + #[[6]]^2] - sigma17)/sigma
]
) &, particleArray
]; // AbsoluteTiming // First
b = cf[particleArray]; // AbsoluteTiming // First
Max[Abs[a - b]]
0.020113
0.063061
0.003697
0.
$endgroup$
$begingroup$
This works perfectly, thank you!
$endgroup$
– bjorn
8 hours ago
3
$begingroup$
You're welcome. Notice that I gave also some hints on how to speed up the random number generation by a factor of 600...
$endgroup$
– Henrik Schumacher
8 hours ago
add a comment |
$begingroup$
You may use Compile
as follows:
Q = 0.18;
Qfactor = 1.*10^-10;
Qspace = 0.135;
sigma2289 = 7.83717;
Qspace17sigma2 = 0.0292835;
sigma17 = 3.7995;
sigma = 1.64676;
TWOPI = 2.*Pi;
cf = With[{
TWOPI = TWOPI, Q = Q, Qfactor = Qfactor, Qspace = Qspace,
sigma = sigma, sigma17 = sigma17, sigma2289 = sigma2289,
Qspace17sigma2 = Qspace17sigma2},
Compile[{{X, _Real, 1}},
TWOPI*(Q + Compile`GetElement[X, 7]*Qfactor - If[
Compile`GetElement[X, 5]^2 + Compile`GetElement[X, 6]^2 <
sigma2289,
Qspace17sigma2 Sqrt[
Compile`GetElement[X, 5]^2 + Compile`GetElement[X, 6]^2],
Qspace/(Sqrt[
Compile`GetElement[X, 5]^2 + Compile`GetElement[X, 6]^2] -
sigma17)/sigma
]
),
CompilationTarget -> "C",
RuntimeAttributes -> {Listable},
Parallelization -> True,
RuntimeOptions -> "Speed"
]
]
And here is a speed comparison. First we have to generate particleArray
. Notice how I generate it: I use RandomVariate
with a second argument to produce many random numbers at once. Moreover, I use ConstantArray[0., {n, 6}]
to generate all the zero (as machine precision 0.
, not as eaxct 0
) and merge everything with Join[#,2]&
. This way, particleArray
is a packed array an can also be processed faster, in general. (The array woud be coerced to machine precision reals and packed when the CompiledFunction
cf
is applied to it anyways.)
n = 100000;
particleArray = Join[
RandomVariate[heavyGaussian, n],
RandomVariate[MultinormalDistribution[{0,3.14159}, {{9.*10^-8, 0}, {0, 0.0194882}}], n],
ConstantArray[0., {n, 6}],
2
]; // AbsoluteTiming // First
a = Map[
TWOPI*(Q + #[[7]]*Qfactor - If[
#[[5]]^2 + #[[6]]^2 < sigma2289,
Qspace17sigma2*Sqrt[#[[5]]^2 + #[[6]]^2],
Qspace/(Sqrt[#[[5]]^2 + #[[6]]^2] - sigma17)/sigma
]
) &, particleArray
]; // AbsoluteTiming // First
b = cf[particleArray]; // AbsoluteTiming // First
Max[Abs[a - b]]
0.020113
0.063061
0.003697
0.
$endgroup$
You may use Compile
as follows:
Q = 0.18;
Qfactor = 1.*10^-10;
Qspace = 0.135;
sigma2289 = 7.83717;
Qspace17sigma2 = 0.0292835;
sigma17 = 3.7995;
sigma = 1.64676;
TWOPI = 2.*Pi;
cf = With[{
TWOPI = TWOPI, Q = Q, Qfactor = Qfactor, Qspace = Qspace,
sigma = sigma, sigma17 = sigma17, sigma2289 = sigma2289,
Qspace17sigma2 = Qspace17sigma2},
Compile[{{X, _Real, 1}},
TWOPI*(Q + Compile`GetElement[X, 7]*Qfactor - If[
Compile`GetElement[X, 5]^2 + Compile`GetElement[X, 6]^2 <
sigma2289,
Qspace17sigma2 Sqrt[
Compile`GetElement[X, 5]^2 + Compile`GetElement[X, 6]^2],
Qspace/(Sqrt[
Compile`GetElement[X, 5]^2 + Compile`GetElement[X, 6]^2] -
sigma17)/sigma
]
),
CompilationTarget -> "C",
RuntimeAttributes -> {Listable},
Parallelization -> True,
RuntimeOptions -> "Speed"
]
]
And here is a speed comparison. First we have to generate particleArray
. Notice how I generate it: I use RandomVariate
with a second argument to produce many random numbers at once. Moreover, I use ConstantArray[0., {n, 6}]
to generate all the zero (as machine precision 0.
, not as eaxct 0
) and merge everything with Join[#,2]&
. This way, particleArray
is a packed array an can also be processed faster, in general. (The array woud be coerced to machine precision reals and packed when the CompiledFunction
cf
is applied to it anyways.)
n = 100000;
particleArray = Join[
RandomVariate[heavyGaussian, n],
RandomVariate[MultinormalDistribution[{0,3.14159}, {{9.*10^-8, 0}, {0, 0.0194882}}], n],
ConstantArray[0., {n, 6}],
2
]; // AbsoluteTiming // First
a = Map[
TWOPI*(Q + #[[7]]*Qfactor - If[
#[[5]]^2 + #[[6]]^2 < sigma2289,
Qspace17sigma2*Sqrt[#[[5]]^2 + #[[6]]^2],
Qspace/(Sqrt[#[[5]]^2 + #[[6]]^2] - sigma17)/sigma
]
) &, particleArray
]; // AbsoluteTiming // First
b = cf[particleArray]; // AbsoluteTiming // First
Max[Abs[a - b]]
0.020113
0.063061
0.003697
0.
edited 8 hours ago
answered 8 hours ago
Henrik SchumacherHenrik Schumacher
52.7k471148
52.7k471148
$begingroup$
This works perfectly, thank you!
$endgroup$
– bjorn
8 hours ago
3
$begingroup$
You're welcome. Notice that I gave also some hints on how to speed up the random number generation by a factor of 600...
$endgroup$
– Henrik Schumacher
8 hours ago
add a comment |
$begingroup$
This works perfectly, thank you!
$endgroup$
– bjorn
8 hours ago
3
$begingroup$
You're welcome. Notice that I gave also some hints on how to speed up the random number generation by a factor of 600...
$endgroup$
– Henrik Schumacher
8 hours ago
$begingroup$
This works perfectly, thank you!
$endgroup$
– bjorn
8 hours ago
$begingroup$
This works perfectly, thank you!
$endgroup$
– bjorn
8 hours ago
3
3
$begingroup$
You're welcome. Notice that I gave also some hints on how to speed up the random number generation by a factor of 600...
$endgroup$
– Henrik Schumacher
8 hours ago
$begingroup$
You're welcome. Notice that I gave also some hints on how to speed up the random number generation by a factor of 600...
$endgroup$
– Henrik Schumacher
8 hours ago
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f191168%2ffast-and-listable-piecewise-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
There’s a piecewise-to-unitstep converter in the Simplify context — something like PWToUnitStep. You can use PiecewiseExpand to convert If to Piecewise first if needed.
$endgroup$
– Michael E2
7 hours ago