Keras' fit_generator() is not calling my generator
$begingroup$
When I call Keras' fit_generator()
, passing in a custom generator class I created, I see "Epoch 1/1" in the spew and that's all. It hangs right there, and the generator is never called. I know this because I put print statements in getitem
that are never printed.
This data generator is modified version of Shervine Amidi's tutorial example of a generator that inherits from the Keras Sequence object:
class DataGenerator(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, batchID,
batch_size = 32,
dim = (32,32,32)):
self.dim = dim
self.batch_size = batch_size
self.datafile_IDs =
self.labelfile_IDs =
self.batchID = batchID
self.DataDir = "data/"
self.BatchDir = ""
DataDir = self.DataDir
BatchDir = DataDir + batchID + "/"
self.BatchDir = BatchDir
path = BatchDir + "datafilenames_" + batchID + ".pkl"
fd = open(path, "rb")
self.datafile_IDs = pkl.load(fd)
fd.close()
path = BatchDir + "labelfilenames_" + batchID + ".pkl"
fd = open(path, "rb")
self.labelfile_IDs = pkl.load(fd)
fd.close()
def __len__(self):
'Denotes the number of batches per epoch'
return int(
np.floor(len(self.datafile_IDs) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
datafn = self.datafile_IDs[index]
labelfn = self.labelfile_IDs[index]
print("In getitem: index = %d, datafn = %s, labelfn = %s" % (
index, datafn, labelfn))
batch_size = self.batch_size
# Initialize data arrays for this batch
X = np.empty((self.batch_size, *self.dim))
y = np.empty((self.batch_size), dtype=int)
BatchDir = self.BatchDir
# Store data
datafn = BatchDir + datafn
X = np.load(datafn)
# Store label
labelfn = BatchDir + labelfn
y = np.load(labelfn)
return X, y
genbatchfiles(df_short, batchID = "short", batch_size = 20)
params = {'batchID': "short", 'batch_size': 20, 'dim': (100, 10088)}
dg = DataGenerator(**params)
time_series_length, input_dim, output_dim = 100, 10088, 1
model = Sequential()
model.add(LSTM(20, input_shape=(time_series_length, input_dim)))
# The max output value is > 1 so relu is used as final activation.
model.add(Dense(output_dim, activation='relu'))
model.compile(loss='mean_squared_error',
optimizer='sgd',
metrics=['accuracy'])
model.fit_generator(generator = dg,
steps_per_epoch = 5,
use_multiprocessing = True,
workers = 6,
verbose = 2)
python keras lstm
New contributor
$endgroup$
add a comment |
$begingroup$
When I call Keras' fit_generator()
, passing in a custom generator class I created, I see "Epoch 1/1" in the spew and that's all. It hangs right there, and the generator is never called. I know this because I put print statements in getitem
that are never printed.
This data generator is modified version of Shervine Amidi's tutorial example of a generator that inherits from the Keras Sequence object:
class DataGenerator(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, batchID,
batch_size = 32,
dim = (32,32,32)):
self.dim = dim
self.batch_size = batch_size
self.datafile_IDs =
self.labelfile_IDs =
self.batchID = batchID
self.DataDir = "data/"
self.BatchDir = ""
DataDir = self.DataDir
BatchDir = DataDir + batchID + "/"
self.BatchDir = BatchDir
path = BatchDir + "datafilenames_" + batchID + ".pkl"
fd = open(path, "rb")
self.datafile_IDs = pkl.load(fd)
fd.close()
path = BatchDir + "labelfilenames_" + batchID + ".pkl"
fd = open(path, "rb")
self.labelfile_IDs = pkl.load(fd)
fd.close()
def __len__(self):
'Denotes the number of batches per epoch'
return int(
np.floor(len(self.datafile_IDs) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
datafn = self.datafile_IDs[index]
labelfn = self.labelfile_IDs[index]
print("In getitem: index = %d, datafn = %s, labelfn = %s" % (
index, datafn, labelfn))
batch_size = self.batch_size
# Initialize data arrays for this batch
X = np.empty((self.batch_size, *self.dim))
y = np.empty((self.batch_size), dtype=int)
BatchDir = self.BatchDir
# Store data
datafn = BatchDir + datafn
X = np.load(datafn)
# Store label
labelfn = BatchDir + labelfn
y = np.load(labelfn)
return X, y
genbatchfiles(df_short, batchID = "short", batch_size = 20)
params = {'batchID': "short", 'batch_size': 20, 'dim': (100, 10088)}
dg = DataGenerator(**params)
time_series_length, input_dim, output_dim = 100, 10088, 1
model = Sequential()
model.add(LSTM(20, input_shape=(time_series_length, input_dim)))
# The max output value is > 1 so relu is used as final activation.
model.add(Dense(output_dim, activation='relu'))
model.compile(loss='mean_squared_error',
optimizer='sgd',
metrics=['accuracy'])
model.fit_generator(generator = dg,
steps_per_epoch = 5,
use_multiprocessing = True,
workers = 6,
verbose = 2)
python keras lstm
New contributor
$endgroup$
add a comment |
$begingroup$
When I call Keras' fit_generator()
, passing in a custom generator class I created, I see "Epoch 1/1" in the spew and that's all. It hangs right there, and the generator is never called. I know this because I put print statements in getitem
that are never printed.
This data generator is modified version of Shervine Amidi's tutorial example of a generator that inherits from the Keras Sequence object:
class DataGenerator(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, batchID,
batch_size = 32,
dim = (32,32,32)):
self.dim = dim
self.batch_size = batch_size
self.datafile_IDs =
self.labelfile_IDs =
self.batchID = batchID
self.DataDir = "data/"
self.BatchDir = ""
DataDir = self.DataDir
BatchDir = DataDir + batchID + "/"
self.BatchDir = BatchDir
path = BatchDir + "datafilenames_" + batchID + ".pkl"
fd = open(path, "rb")
self.datafile_IDs = pkl.load(fd)
fd.close()
path = BatchDir + "labelfilenames_" + batchID + ".pkl"
fd = open(path, "rb")
self.labelfile_IDs = pkl.load(fd)
fd.close()
def __len__(self):
'Denotes the number of batches per epoch'
return int(
np.floor(len(self.datafile_IDs) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
datafn = self.datafile_IDs[index]
labelfn = self.labelfile_IDs[index]
print("In getitem: index = %d, datafn = %s, labelfn = %s" % (
index, datafn, labelfn))
batch_size = self.batch_size
# Initialize data arrays for this batch
X = np.empty((self.batch_size, *self.dim))
y = np.empty((self.batch_size), dtype=int)
BatchDir = self.BatchDir
# Store data
datafn = BatchDir + datafn
X = np.load(datafn)
# Store label
labelfn = BatchDir + labelfn
y = np.load(labelfn)
return X, y
genbatchfiles(df_short, batchID = "short", batch_size = 20)
params = {'batchID': "short", 'batch_size': 20, 'dim': (100, 10088)}
dg = DataGenerator(**params)
time_series_length, input_dim, output_dim = 100, 10088, 1
model = Sequential()
model.add(LSTM(20, input_shape=(time_series_length, input_dim)))
# The max output value is > 1 so relu is used as final activation.
model.add(Dense(output_dim, activation='relu'))
model.compile(loss='mean_squared_error',
optimizer='sgd',
metrics=['accuracy'])
model.fit_generator(generator = dg,
steps_per_epoch = 5,
use_multiprocessing = True,
workers = 6,
verbose = 2)
python keras lstm
New contributor
$endgroup$
When I call Keras' fit_generator()
, passing in a custom generator class I created, I see "Epoch 1/1" in the spew and that's all. It hangs right there, and the generator is never called. I know this because I put print statements in getitem
that are never printed.
This data generator is modified version of Shervine Amidi's tutorial example of a generator that inherits from the Keras Sequence object:
class DataGenerator(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, batchID,
batch_size = 32,
dim = (32,32,32)):
self.dim = dim
self.batch_size = batch_size
self.datafile_IDs =
self.labelfile_IDs =
self.batchID = batchID
self.DataDir = "data/"
self.BatchDir = ""
DataDir = self.DataDir
BatchDir = DataDir + batchID + "/"
self.BatchDir = BatchDir
path = BatchDir + "datafilenames_" + batchID + ".pkl"
fd = open(path, "rb")
self.datafile_IDs = pkl.load(fd)
fd.close()
path = BatchDir + "labelfilenames_" + batchID + ".pkl"
fd = open(path, "rb")
self.labelfile_IDs = pkl.load(fd)
fd.close()
def __len__(self):
'Denotes the number of batches per epoch'
return int(
np.floor(len(self.datafile_IDs) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
datafn = self.datafile_IDs[index]
labelfn = self.labelfile_IDs[index]
print("In getitem: index = %d, datafn = %s, labelfn = %s" % (
index, datafn, labelfn))
batch_size = self.batch_size
# Initialize data arrays for this batch
X = np.empty((self.batch_size, *self.dim))
y = np.empty((self.batch_size), dtype=int)
BatchDir = self.BatchDir
# Store data
datafn = BatchDir + datafn
X = np.load(datafn)
# Store label
labelfn = BatchDir + labelfn
y = np.load(labelfn)
return X, y
genbatchfiles(df_short, batchID = "short", batch_size = 20)
params = {'batchID': "short", 'batch_size': 20, 'dim': (100, 10088)}
dg = DataGenerator(**params)
time_series_length, input_dim, output_dim = 100, 10088, 1
model = Sequential()
model.add(LSTM(20, input_shape=(time_series_length, input_dim)))
# The max output value is > 1 so relu is used as final activation.
model.add(Dense(output_dim, activation='relu'))
model.compile(loss='mean_squared_error',
optimizer='sgd',
metrics=['accuracy'])
model.fit_generator(generator = dg,
steps_per_epoch = 5,
use_multiprocessing = True,
workers = 6,
verbose = 2)
python keras lstm
python keras lstm
New contributor
New contributor
New contributor
asked 6 mins ago
John StrongJohn Strong
1
1
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
John Strong is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45328%2fkeras-fit-generator-is-not-calling-my-generator%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
John Strong is a new contributor. Be nice, and check out our Code of Conduct.
John Strong is a new contributor. Be nice, and check out our Code of Conduct.
John Strong is a new contributor. Be nice, and check out our Code of Conduct.
John Strong is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45328%2fkeras-fit-generator-is-not-calling-my-generator%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown