Reg. Pandas factorize()

Multi tool use
Multi tool use












0












$begingroup$


-Hi Experts-



I just read about factorise() function in Pandas. Using this I'm able to encode (enumerate) my string values into numbers. But, now I'm not able to understand what numbers corresponds to what string.



Ex.



df['product_name'] # Ex. A, B, C

df['product_name'] = df['product_name'].factorize()[0]
df['product_name'] # Ex. 0, 1, 2


Just illustration, not actual o/p -



A - 0
B - 1
C - 2


How can i get this? Please advise.



-Curious newbie :)









share









$endgroup$

















    0












    $begingroup$


    -Hi Experts-



    I just read about factorise() function in Pandas. Using this I'm able to encode (enumerate) my string values into numbers. But, now I'm not able to understand what numbers corresponds to what string.



    Ex.



    df['product_name'] # Ex. A, B, C

    df['product_name'] = df['product_name'].factorize()[0]
    df['product_name'] # Ex. 0, 1, 2


    Just illustration, not actual o/p -



    A - 0
    B - 1
    C - 2


    How can i get this? Please advise.



    -Curious newbie :)









    share









    $endgroup$















      0












      0








      0





      $begingroup$


      -Hi Experts-



      I just read about factorise() function in Pandas. Using this I'm able to encode (enumerate) my string values into numbers. But, now I'm not able to understand what numbers corresponds to what string.



      Ex.



      df['product_name'] # Ex. A, B, C

      df['product_name'] = df['product_name'].factorize()[0]
      df['product_name'] # Ex. 0, 1, 2


      Just illustration, not actual o/p -



      A - 0
      B - 1
      C - 2


      How can i get this? Please advise.



      -Curious newbie :)









      share









      $endgroup$




      -Hi Experts-



      I just read about factorise() function in Pandas. Using this I'm able to encode (enumerate) my string values into numbers. But, now I'm not able to understand what numbers corresponds to what string.



      Ex.



      df['product_name'] # Ex. A, B, C

      df['product_name'] = df['product_name'].factorize()[0]
      df['product_name'] # Ex. 0, 1, 2


      Just illustration, not actual o/p -



      A - 0
      B - 1
      C - 2


      How can i get this? Please advise.



      -Curious newbie :)







      machine-learning python scikit-learn pandas data-science-model





      share












      share










      share



      share










      asked 4 mins ago









      ranit.branit.b

      134




      134






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "557"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f44387%2freg-pandas-factorize%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f44387%2freg-pandas-factorize%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Sk6mLW36Z1sub U6K4 aIW,zSg89,oVVe9w JUZD8uzF4qEo Pxgn GrJwhpqfJECgwc,JDqO xYFnfRU7SWFu7bhn92bu4
          wWW,bPr,a,1S 9N 54ALUXRha 5DwfD3,HcBVhTj7e 24LBXj 0hBSMmXKcmv9SS vorX3j qDCpkxun0,XTsfzO8RQD,90C8KdH

          Popular posts from this blog

          The minimum number of groups for any class cannot be less than 2 error

          Franz Schubert

          Prelog