Uniformly continuous derivative implies existence of limit












2












$begingroup$



Let $f in C^1([0, +infty))$. Suppose that $lim_{x rightarrow +infty} f(x)=L$ and $f'$ is uniformly continuous.



Show that $$lim_{x rightarrow +infty} f'(x) + f(x)=L$$




I tried to apply L'Hospital's Rule to $frac{e^xf(x)}{e^x}$ since $frac{d}{dx}e^xf(x)=e^x(f'(x)+f(x))$. It seems alright but I didn't use the uniform continuity of $f'$ and it doesn't work for the function $f(x)=frac{sin(x^2)}{x}$ whose derivative is $f'(x)=2cos(x^2)-frac{sin(x^2)}{x^2}$ since $lim_{x rightarrow +infty} f'(x)$ doesn't exist.



Any ideas? Thanks in advance.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
    $endgroup$
    – RRL
    1 hour ago
















2












$begingroup$



Let $f in C^1([0, +infty))$. Suppose that $lim_{x rightarrow +infty} f(x)=L$ and $f'$ is uniformly continuous.



Show that $$lim_{x rightarrow +infty} f'(x) + f(x)=L$$




I tried to apply L'Hospital's Rule to $frac{e^xf(x)}{e^x}$ since $frac{d}{dx}e^xf(x)=e^x(f'(x)+f(x))$. It seems alright but I didn't use the uniform continuity of $f'$ and it doesn't work for the function $f(x)=frac{sin(x^2)}{x}$ whose derivative is $f'(x)=2cos(x^2)-frac{sin(x^2)}{x^2}$ since $lim_{x rightarrow +infty} f'(x)$ doesn't exist.



Any ideas? Thanks in advance.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
    $endgroup$
    – RRL
    1 hour ago














2












2








2


1



$begingroup$



Let $f in C^1([0, +infty))$. Suppose that $lim_{x rightarrow +infty} f(x)=L$ and $f'$ is uniformly continuous.



Show that $$lim_{x rightarrow +infty} f'(x) + f(x)=L$$




I tried to apply L'Hospital's Rule to $frac{e^xf(x)}{e^x}$ since $frac{d}{dx}e^xf(x)=e^x(f'(x)+f(x))$. It seems alright but I didn't use the uniform continuity of $f'$ and it doesn't work for the function $f(x)=frac{sin(x^2)}{x}$ whose derivative is $f'(x)=2cos(x^2)-frac{sin(x^2)}{x^2}$ since $lim_{x rightarrow +infty} f'(x)$ doesn't exist.



Any ideas? Thanks in advance.










share|cite|improve this question









$endgroup$





Let $f in C^1([0, +infty))$. Suppose that $lim_{x rightarrow +infty} f(x)=L$ and $f'$ is uniformly continuous.



Show that $$lim_{x rightarrow +infty} f'(x) + f(x)=L$$




I tried to apply L'Hospital's Rule to $frac{e^xf(x)}{e^x}$ since $frac{d}{dx}e^xf(x)=e^x(f'(x)+f(x))$. It seems alright but I didn't use the uniform continuity of $f'$ and it doesn't work for the function $f(x)=frac{sin(x^2)}{x}$ whose derivative is $f'(x)=2cos(x^2)-frac{sin(x^2)}{x^2}$ since $lim_{x rightarrow +infty} f'(x)$ doesn't exist.



Any ideas? Thanks in advance.







real-analysis






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 hours ago









lzralbulzralbu

697512




697512












  • $begingroup$
    The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
    $endgroup$
    – RRL
    1 hour ago


















  • $begingroup$
    The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
    $endgroup$
    – RRL
    1 hour ago
















$begingroup$
The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
$endgroup$
– RRL
1 hour ago




$begingroup$
The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
$endgroup$
– RRL
1 hour ago










1 Answer
1






active

oldest

votes


















3












$begingroup$

We have $lim_{x to infty} f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_{x to infty}f(x) - f(0) = L - f(0) quad (text{convergent})$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_{x to infty}f'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_{x to infty} f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_{x_n - delta}^{x_n + delta} f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    48 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    33 mins ago












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3205125%2funiformly-continuous-derivative-implies-existence-of-limit%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

We have $lim_{x to infty} f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_{x to infty}f(x) - f(0) = L - f(0) quad (text{convergent})$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_{x to infty}f'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_{x to infty} f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_{x_n - delta}^{x_n + delta} f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    48 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    33 mins ago
















3












$begingroup$

We have $lim_{x to infty} f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_{x to infty}f(x) - f(0) = L - f(0) quad (text{convergent})$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_{x to infty}f'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_{x to infty} f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_{x_n - delta}^{x_n + delta} f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    48 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    33 mins ago














3












3








3





$begingroup$

We have $lim_{x to infty} f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_{x to infty}f(x) - f(0) = L - f(0) quad (text{convergent})$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_{x to infty}f'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_{x to infty} f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_{x_n - delta}^{x_n + delta} f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.






share|cite|improve this answer











$endgroup$



We have $lim_{x to infty} f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_{x to infty}f(x) - f(0) = L - f(0) quad (text{convergent})$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_{x to infty}f'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_{x to infty} f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_{x_n - delta}^{x_n + delta} f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 1 hour ago

























answered 1 hour ago









RRLRRL

54.1k52675




54.1k52675












  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    48 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    33 mins ago


















  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    48 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    33 mins ago
















$begingroup$
I can help you further, but first let me know if these hints makes it obvious to you now.
$endgroup$
– RRL
1 hour ago




$begingroup$
I can help you further, but first let me know if these hints makes it obvious to you now.
$endgroup$
– RRL
1 hour ago












$begingroup$
I still can't see how to use uniform continuity. Could you, please, explain it further?
$endgroup$
– lzralbu
1 hour ago




$begingroup$
I still can't see how to use uniform continuity. Could you, please, explain it further?
$endgroup$
– lzralbu
1 hour ago












$begingroup$
I shall do so...
$endgroup$
– RRL
1 hour ago




$begingroup$
I shall do so...
$endgroup$
– RRL
1 hour ago












$begingroup$
What about the example given in the question?
$endgroup$
– Jens Schwaiger
48 mins ago




$begingroup$
What about the example given in the question?
$endgroup$
– Jens Schwaiger
48 mins ago












$begingroup$
@JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
$endgroup$
– RRL
33 mins ago




$begingroup$
@JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
$endgroup$
– RRL
33 mins ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3205125%2funiformly-continuous-derivative-implies-existence-of-limit%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ponta tanko

Tantalo (mitologio)

Erzsébet Schaár