Any workaround to fix word embedding look-up error for keras model?
$begingroup$
I am working with character level cnn model for sentence classification, and I used keras framework to build my model. However, model compilation was good, but when I tried to fit my model I faced following embedding lookup error:
Train on 10240 samples, validate on 1284 samples
Epoch 1/30
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-57-15a1aa414e1a> in <module>
1 history_char= model_char.fit(x_train,y_train,epochs=num_epochs, batch_size=batch_size,
----> 2 validation_data=(x_val,y_val))
3
4 # model_char.fit(x_train,y_train,epochs=10, batch_size=64, validation_data=(x_val, y_val))
~AppDataLocalContinuumanaconda3libsite-packageskerasenginetraining.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
1037 initial_epoch=initial_epoch,
1038 steps_per_epoch=steps_per_epoch,
-> 1039 validation_steps=validation_steps)
1040
1041 def evaluate(self, x=None, y=None,
~AppDataLocalContinuumanaconda3libsite-packageskerasenginetraining_arrays.py in fit_loop(model, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps)
197 ins_batch[i] = ins_batch[i].toarray()
198
--> 199 outs = f(ins_batch)
200 outs = to_list(outs)
201 for l, o in zip(out_labels, outs):
~AppDataLocalContinuumanaconda3libsite-packageskerasbackendtensorflow_backend.py in __call__(self, inputs)
2713 return self._legacy_call(inputs)
2714
-> 2715 return self._call(inputs)
2716 else:
2717 if py_any(is_tensor(x) for x in inputs):
~AppDataLocalContinuumanaconda3libsite-packageskerasbackendtensorflow_backend.py in _call(self, inputs)
2673 fetched = self._callable_fn(*array_vals, run_metadata=self.run_metadata)
2674 else:
-> 2675 fetched = self._callable_fn(*array_vals)
2676 return fetched[:len(self.outputs)]
2677
~AppDataLocalContinuumanaconda3libsite-packagestensorflowpythonclientsession.py in __call__(self, *args, **kwargs)
1437 ret = tf_session.TF_SessionRunCallable(
1438 self._session._session, self._handle, args, status,
-> 1439 run_metadata_ptr)
1440 if run_metadata:
1441 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
~AppDataLocalContinuumanaconda3libsite-packagestensorflowpythonframeworkerrors_impl.py in __exit__(self, type_arg, value_arg, traceback_arg)
526 None, None,
527 compat.as_text(c_api.TF_Message(self.status.status)),
--> 528 c_api.TF_GetCode(self.status.status))
529 # Delete the underlying status object from memory otherwise it stays alive
530 # as there is a reference to status from this from the traceback due to
InvalidArgumentError: indices[120,0] = 516 is not in [0, 70)
[[{{node embedding_14/embedding_lookup}}]]
here is basic architecture of keras model (screenshot):
deep-learning keras
New contributor
$endgroup$
add a comment |
$begingroup$
I am working with character level cnn model for sentence classification, and I used keras framework to build my model. However, model compilation was good, but when I tried to fit my model I faced following embedding lookup error:
Train on 10240 samples, validate on 1284 samples
Epoch 1/30
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-57-15a1aa414e1a> in <module>
1 history_char= model_char.fit(x_train,y_train,epochs=num_epochs, batch_size=batch_size,
----> 2 validation_data=(x_val,y_val))
3
4 # model_char.fit(x_train,y_train,epochs=10, batch_size=64, validation_data=(x_val, y_val))
~AppDataLocalContinuumanaconda3libsite-packageskerasenginetraining.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
1037 initial_epoch=initial_epoch,
1038 steps_per_epoch=steps_per_epoch,
-> 1039 validation_steps=validation_steps)
1040
1041 def evaluate(self, x=None, y=None,
~AppDataLocalContinuumanaconda3libsite-packageskerasenginetraining_arrays.py in fit_loop(model, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps)
197 ins_batch[i] = ins_batch[i].toarray()
198
--> 199 outs = f(ins_batch)
200 outs = to_list(outs)
201 for l, o in zip(out_labels, outs):
~AppDataLocalContinuumanaconda3libsite-packageskerasbackendtensorflow_backend.py in __call__(self, inputs)
2713 return self._legacy_call(inputs)
2714
-> 2715 return self._call(inputs)
2716 else:
2717 if py_any(is_tensor(x) for x in inputs):
~AppDataLocalContinuumanaconda3libsite-packageskerasbackendtensorflow_backend.py in _call(self, inputs)
2673 fetched = self._callable_fn(*array_vals, run_metadata=self.run_metadata)
2674 else:
-> 2675 fetched = self._callable_fn(*array_vals)
2676 return fetched[:len(self.outputs)]
2677
~AppDataLocalContinuumanaconda3libsite-packagestensorflowpythonclientsession.py in __call__(self, *args, **kwargs)
1437 ret = tf_session.TF_SessionRunCallable(
1438 self._session._session, self._handle, args, status,
-> 1439 run_metadata_ptr)
1440 if run_metadata:
1441 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
~AppDataLocalContinuumanaconda3libsite-packagestensorflowpythonframeworkerrors_impl.py in __exit__(self, type_arg, value_arg, traceback_arg)
526 None, None,
527 compat.as_text(c_api.TF_Message(self.status.status)),
--> 528 c_api.TF_GetCode(self.status.status))
529 # Delete the underlying status object from memory otherwise it stays alive
530 # as there is a reference to status from this from the traceback due to
InvalidArgumentError: indices[120,0] = 516 is not in [0, 70)
[[{{node embedding_14/embedding_lookup}}]]
here is basic architecture of keras model (screenshot):
deep-learning keras
New contributor
$endgroup$
add a comment |
$begingroup$
I am working with character level cnn model for sentence classification, and I used keras framework to build my model. However, model compilation was good, but when I tried to fit my model I faced following embedding lookup error:
Train on 10240 samples, validate on 1284 samples
Epoch 1/30
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-57-15a1aa414e1a> in <module>
1 history_char= model_char.fit(x_train,y_train,epochs=num_epochs, batch_size=batch_size,
----> 2 validation_data=(x_val,y_val))
3
4 # model_char.fit(x_train,y_train,epochs=10, batch_size=64, validation_data=(x_val, y_val))
~AppDataLocalContinuumanaconda3libsite-packageskerasenginetraining.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
1037 initial_epoch=initial_epoch,
1038 steps_per_epoch=steps_per_epoch,
-> 1039 validation_steps=validation_steps)
1040
1041 def evaluate(self, x=None, y=None,
~AppDataLocalContinuumanaconda3libsite-packageskerasenginetraining_arrays.py in fit_loop(model, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps)
197 ins_batch[i] = ins_batch[i].toarray()
198
--> 199 outs = f(ins_batch)
200 outs = to_list(outs)
201 for l, o in zip(out_labels, outs):
~AppDataLocalContinuumanaconda3libsite-packageskerasbackendtensorflow_backend.py in __call__(self, inputs)
2713 return self._legacy_call(inputs)
2714
-> 2715 return self._call(inputs)
2716 else:
2717 if py_any(is_tensor(x) for x in inputs):
~AppDataLocalContinuumanaconda3libsite-packageskerasbackendtensorflow_backend.py in _call(self, inputs)
2673 fetched = self._callable_fn(*array_vals, run_metadata=self.run_metadata)
2674 else:
-> 2675 fetched = self._callable_fn(*array_vals)
2676 return fetched[:len(self.outputs)]
2677
~AppDataLocalContinuumanaconda3libsite-packagestensorflowpythonclientsession.py in __call__(self, *args, **kwargs)
1437 ret = tf_session.TF_SessionRunCallable(
1438 self._session._session, self._handle, args, status,
-> 1439 run_metadata_ptr)
1440 if run_metadata:
1441 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
~AppDataLocalContinuumanaconda3libsite-packagestensorflowpythonframeworkerrors_impl.py in __exit__(self, type_arg, value_arg, traceback_arg)
526 None, None,
527 compat.as_text(c_api.TF_Message(self.status.status)),
--> 528 c_api.TF_GetCode(self.status.status))
529 # Delete the underlying status object from memory otherwise it stays alive
530 # as there is a reference to status from this from the traceback due to
InvalidArgumentError: indices[120,0] = 516 is not in [0, 70)
[[{{node embedding_14/embedding_lookup}}]]
here is basic architecture of keras model (screenshot):
deep-learning keras
New contributor
$endgroup$
I am working with character level cnn model for sentence classification, and I used keras framework to build my model. However, model compilation was good, but when I tried to fit my model I faced following embedding lookup error:
Train on 10240 samples, validate on 1284 samples
Epoch 1/30
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-57-15a1aa414e1a> in <module>
1 history_char= model_char.fit(x_train,y_train,epochs=num_epochs, batch_size=batch_size,
----> 2 validation_data=(x_val,y_val))
3
4 # model_char.fit(x_train,y_train,epochs=10, batch_size=64, validation_data=(x_val, y_val))
~AppDataLocalContinuumanaconda3libsite-packageskerasenginetraining.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
1037 initial_epoch=initial_epoch,
1038 steps_per_epoch=steps_per_epoch,
-> 1039 validation_steps=validation_steps)
1040
1041 def evaluate(self, x=None, y=None,
~AppDataLocalContinuumanaconda3libsite-packageskerasenginetraining_arrays.py in fit_loop(model, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps)
197 ins_batch[i] = ins_batch[i].toarray()
198
--> 199 outs = f(ins_batch)
200 outs = to_list(outs)
201 for l, o in zip(out_labels, outs):
~AppDataLocalContinuumanaconda3libsite-packageskerasbackendtensorflow_backend.py in __call__(self, inputs)
2713 return self._legacy_call(inputs)
2714
-> 2715 return self._call(inputs)
2716 else:
2717 if py_any(is_tensor(x) for x in inputs):
~AppDataLocalContinuumanaconda3libsite-packageskerasbackendtensorflow_backend.py in _call(self, inputs)
2673 fetched = self._callable_fn(*array_vals, run_metadata=self.run_metadata)
2674 else:
-> 2675 fetched = self._callable_fn(*array_vals)
2676 return fetched[:len(self.outputs)]
2677
~AppDataLocalContinuumanaconda3libsite-packagestensorflowpythonclientsession.py in __call__(self, *args, **kwargs)
1437 ret = tf_session.TF_SessionRunCallable(
1438 self._session._session, self._handle, args, status,
-> 1439 run_metadata_ptr)
1440 if run_metadata:
1441 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
~AppDataLocalContinuumanaconda3libsite-packagestensorflowpythonframeworkerrors_impl.py in __exit__(self, type_arg, value_arg, traceback_arg)
526 None, None,
527 compat.as_text(c_api.TF_Message(self.status.status)),
--> 528 c_api.TF_GetCode(self.status.status))
529 # Delete the underlying status object from memory otherwise it stays alive
530 # as there is a reference to status from this from the traceback due to
InvalidArgumentError: indices[120,0] = 516 is not in [0, 70)
[[{{node embedding_14/embedding_lookup}}]]
here is basic architecture of keras model (screenshot):
deep-learning keras
deep-learning keras
New contributor
New contributor
New contributor
asked 4 mins ago
beyond_inifinitybeyond_inifinity
11
11
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
beyond_inifinity is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47767%2fany-workaround-to-fix-word-embedding-look-up-error-for-keras-model%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
beyond_inifinity is a new contributor. Be nice, and check out our Code of Conduct.
beyond_inifinity is a new contributor. Be nice, and check out our Code of Conduct.
beyond_inifinity is a new contributor. Be nice, and check out our Code of Conduct.
beyond_inifinity is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47767%2fany-workaround-to-fix-word-embedding-look-up-error-for-keras-model%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown