Can i forecast with discontinued data using SARIMA












0












$begingroup$


I have data for sales on monthly basis but few months information is not in csv file, Can i forecast or fill that missing month with other calculated value from present record.



enter image description here



part of code i am using:



AIC = 
SARIMAX_model =
for param in pdq:
for param_seasonal in seasonal_pdq:
try:
mod = sm.tsa.statespace.SARIMAX(train_data,
order=param,
seasonal_order=param_seasonal,
enforce_stationarity=False,
enforce_invertibility=False)

results = mod.fit()

print('SARIMAX{}x{} - AIC:{}'.format(param, param_seasonal, results.aic), end='r')
AIC.append(results.aic)
SARIMAX_model.append([param, param_seasonal])
except:
continue
print('The smallest AIC is {} for model SARIMAX{}x{}'.format(min(AIC), SARIMAX_model[AIC.index(min(AIC))][0],SARIMAX_model[AIC.index(min(AIC))][1]))

# Let's fit this model
mod = sm.tsa.statespace.SARIMAX(train_data,
order=SARIMAX_model[AIC.index(min(AIC))][0],
seasonal_order=SARIMAX_model[AIC.index(min(AIC))][1],
enforce_stationarity=False,
enforce_invertibility=False)








share









$endgroup$

















    0












    $begingroup$


    I have data for sales on monthly basis but few months information is not in csv file, Can i forecast or fill that missing month with other calculated value from present record.



    enter image description here



    part of code i am using:



    AIC = 
    SARIMAX_model =
    for param in pdq:
    for param_seasonal in seasonal_pdq:
    try:
    mod = sm.tsa.statespace.SARIMAX(train_data,
    order=param,
    seasonal_order=param_seasonal,
    enforce_stationarity=False,
    enforce_invertibility=False)

    results = mod.fit()

    print('SARIMAX{}x{} - AIC:{}'.format(param, param_seasonal, results.aic), end='r')
    AIC.append(results.aic)
    SARIMAX_model.append([param, param_seasonal])
    except:
    continue
    print('The smallest AIC is {} for model SARIMAX{}x{}'.format(min(AIC), SARIMAX_model[AIC.index(min(AIC))][0],SARIMAX_model[AIC.index(min(AIC))][1]))

    # Let's fit this model
    mod = sm.tsa.statespace.SARIMAX(train_data,
    order=SARIMAX_model[AIC.index(min(AIC))][0],
    seasonal_order=SARIMAX_model[AIC.index(min(AIC))][1],
    enforce_stationarity=False,
    enforce_invertibility=False)








    share









    $endgroup$















      0












      0








      0





      $begingroup$


      I have data for sales on monthly basis but few months information is not in csv file, Can i forecast or fill that missing month with other calculated value from present record.



      enter image description here



      part of code i am using:



      AIC = 
      SARIMAX_model =
      for param in pdq:
      for param_seasonal in seasonal_pdq:
      try:
      mod = sm.tsa.statespace.SARIMAX(train_data,
      order=param,
      seasonal_order=param_seasonal,
      enforce_stationarity=False,
      enforce_invertibility=False)

      results = mod.fit()

      print('SARIMAX{}x{} - AIC:{}'.format(param, param_seasonal, results.aic), end='r')
      AIC.append(results.aic)
      SARIMAX_model.append([param, param_seasonal])
      except:
      continue
      print('The smallest AIC is {} for model SARIMAX{}x{}'.format(min(AIC), SARIMAX_model[AIC.index(min(AIC))][0],SARIMAX_model[AIC.index(min(AIC))][1]))

      # Let's fit this model
      mod = sm.tsa.statespace.SARIMAX(train_data,
      order=SARIMAX_model[AIC.index(min(AIC))][0],
      seasonal_order=SARIMAX_model[AIC.index(min(AIC))][1],
      enforce_stationarity=False,
      enforce_invertibility=False)








      share









      $endgroup$




      I have data for sales on monthly basis but few months information is not in csv file, Can i forecast or fill that missing month with other calculated value from present record.



      enter image description here



      part of code i am using:



      AIC = 
      SARIMAX_model =
      for param in pdq:
      for param_seasonal in seasonal_pdq:
      try:
      mod = sm.tsa.statespace.SARIMAX(train_data,
      order=param,
      seasonal_order=param_seasonal,
      enforce_stationarity=False,
      enforce_invertibility=False)

      results = mod.fit()

      print('SARIMAX{}x{} - AIC:{}'.format(param, param_seasonal, results.aic), end='r')
      AIC.append(results.aic)
      SARIMAX_model.append([param, param_seasonal])
      except:
      continue
      print('The smallest AIC is {} for model SARIMAX{}x{}'.format(min(AIC), SARIMAX_model[AIC.index(min(AIC))][0],SARIMAX_model[AIC.index(min(AIC))][1]))

      # Let's fit this model
      mod = sm.tsa.statespace.SARIMAX(train_data,
      order=SARIMAX_model[AIC.index(min(AIC))][0],
      seasonal_order=SARIMAX_model[AIC.index(min(AIC))][1],
      enforce_stationarity=False,
      enforce_invertibility=False)






      python machine-learning-model forecasting





      share












      share










      share



      share










      asked 9 mins ago









      bipul kumarbipul kumar

      214




      214






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "557"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47768%2fcan-i-forecast-with-discontinued-data-using-sarima%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47768%2fcan-i-forecast-with-discontinued-data-using-sarima%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ponta tanko

          Tantalo (mitologio)

          Prelog