Better way to deal with downsampled MNIST images
$begingroup$
model = tf.keras.models.Sequential([
tf.keras.layers.MaxPool2D(4, 4, input_shape=(28,28,1)),
tf.keras.layers.Conv2D(32, (5, 5), padding='same', activation=tf.nn.relu),
tf.keras.layers.MaxPool2D(2, 2),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Conv2D(128, (3, 3), padding='same', activation=tf.nn.relu),
tf.keras.layers.Conv2D(128, (3, 3), padding='same', activation=tf.nn.relu),
tf.keras.layers.MaxPool2D(2, 2),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
optimizer = tf.keras.optimizers.RMSprop(lr=0.00020, rho=0.99, epsilon=1e-8, decay=0.0)
model.compile(optimizer=optimizer,loss='sparse_categorical_crossentropy',metrics=['accuracy'])
So, the MNIST images are downsampled from 28*28 to 7*7 from the first line. Using that,I want to get a good accuracy and the maximum I'm getting is 89% with 40 epoch and 6000 test images. How can I improve this without removing the first line?
tensorflow cnn computer-vision mnist
$endgroup$
add a comment |
$begingroup$
model = tf.keras.models.Sequential([
tf.keras.layers.MaxPool2D(4, 4, input_shape=(28,28,1)),
tf.keras.layers.Conv2D(32, (5, 5), padding='same', activation=tf.nn.relu),
tf.keras.layers.MaxPool2D(2, 2),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Conv2D(128, (3, 3), padding='same', activation=tf.nn.relu),
tf.keras.layers.Conv2D(128, (3, 3), padding='same', activation=tf.nn.relu),
tf.keras.layers.MaxPool2D(2, 2),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
optimizer = tf.keras.optimizers.RMSprop(lr=0.00020, rho=0.99, epsilon=1e-8, decay=0.0)
model.compile(optimizer=optimizer,loss='sparse_categorical_crossentropy',metrics=['accuracy'])
So, the MNIST images are downsampled from 28*28 to 7*7 from the first line. Using that,I want to get a good accuracy and the maximum I'm getting is 89% with 40 epoch and 6000 test images. How can I improve this without removing the first line?
tensorflow cnn computer-vision mnist
$endgroup$
add a comment |
$begingroup$
model = tf.keras.models.Sequential([
tf.keras.layers.MaxPool2D(4, 4, input_shape=(28,28,1)),
tf.keras.layers.Conv2D(32, (5, 5), padding='same', activation=tf.nn.relu),
tf.keras.layers.MaxPool2D(2, 2),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Conv2D(128, (3, 3), padding='same', activation=tf.nn.relu),
tf.keras.layers.Conv2D(128, (3, 3), padding='same', activation=tf.nn.relu),
tf.keras.layers.MaxPool2D(2, 2),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
optimizer = tf.keras.optimizers.RMSprop(lr=0.00020, rho=0.99, epsilon=1e-8, decay=0.0)
model.compile(optimizer=optimizer,loss='sparse_categorical_crossentropy',metrics=['accuracy'])
So, the MNIST images are downsampled from 28*28 to 7*7 from the first line. Using that,I want to get a good accuracy and the maximum I'm getting is 89% with 40 epoch and 6000 test images. How can I improve this without removing the first line?
tensorflow cnn computer-vision mnist
$endgroup$
model = tf.keras.models.Sequential([
tf.keras.layers.MaxPool2D(4, 4, input_shape=(28,28,1)),
tf.keras.layers.Conv2D(32, (5, 5), padding='same', activation=tf.nn.relu),
tf.keras.layers.MaxPool2D(2, 2),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Conv2D(128, (3, 3), padding='same', activation=tf.nn.relu),
tf.keras.layers.Conv2D(128, (3, 3), padding='same', activation=tf.nn.relu),
tf.keras.layers.MaxPool2D(2, 2),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
optimizer = tf.keras.optimizers.RMSprop(lr=0.00020, rho=0.99, epsilon=1e-8, decay=0.0)
model.compile(optimizer=optimizer,loss='sparse_categorical_crossentropy',metrics=['accuracy'])
So, the MNIST images are downsampled from 28*28 to 7*7 from the first line. Using that,I want to get a good accuracy and the maximum I'm getting is 89% with 40 epoch and 6000 test images. How can I improve this without removing the first line?
tensorflow cnn computer-vision mnist
tensorflow cnn computer-vision mnist
asked 4 mins ago
MrRobot9MrRobot9
1154
1154
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f50811%2fbetter-way-to-deal-with-downsampled-mnist-images%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f50811%2fbetter-way-to-deal-with-downsampled-mnist-images%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown