How to correct the programming for KNN
$begingroup$
I get the answer but the output pictures are wrong - may I know which part on my programming is wrong
# read in the iris data
from sklearn.datasets import load_iris
iris = load_iris()
# create X (features) and y (response)
X = iris.data
y = iris.target
from sklearn.neighbors import KNeighborsClassifier
k1 = (1, 2, 3, 4, 5, 6, 7, 8, 9)
k2 = (10, 15, 20, 25, 30, 35, 40)
knn = KNeighborsClassifier(n_neighbors=10)
knn.fit(X, y)
y_pred = knn.predict(X)
from sklearn import metrics
metrics.accuracy_score(y,y_pred)
knn = KNeighborsClassifier(n_neighbors=1)
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0)
# import Matplotlib (scientific plotting library)
import matplotlib.pyplot as plt
import numpy as np
# try K=1 through K=9 and record testing accuracy
k1_range = range(1, 9)
k2_range = range(10, 40)
# create Python dictionary using
scores1 =
for k1 in k1_range:
knn = KNeighborsClassifier(n_neighbors=k1, metric='minkowski', p=2)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
scores1.append(metrics.accuracy_score(y_test, y_pred))
scores2 =
for k2 in k2_range:
knn = KNeighborsClassifier(n_neighbors=k2, metric='minkowski', p=2)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
scores2.append(metrics.accuracy_score(y_test, y_pred))
# plot the relationship between K and testing accuracy
# plt.plot(x_axis, y_axis)
plt.subplot(211)
plt.plot(k1_range, scores1)
plt.yticks(np.arange(0.93, 0.98, 0.03))
plt.xlabel('Number of neighbors')
plt.ylabel('Accuracy')
plt.subplot(212)
plt.plot(k2_range, scores2)
plt.yticks(np.arange(0.91, 0.98, 0.03))
plt.xlabel('Number of neighbors')
plt.ylabel('Accuracy')
plt.tight_layout()
plt.show()
Please see the attached file -
Please help me to correct the pictures as refer to the attached image file
python k-nn ai
New contributor
$endgroup$
add a comment |
$begingroup$
I get the answer but the output pictures are wrong - may I know which part on my programming is wrong
# read in the iris data
from sklearn.datasets import load_iris
iris = load_iris()
# create X (features) and y (response)
X = iris.data
y = iris.target
from sklearn.neighbors import KNeighborsClassifier
k1 = (1, 2, 3, 4, 5, 6, 7, 8, 9)
k2 = (10, 15, 20, 25, 30, 35, 40)
knn = KNeighborsClassifier(n_neighbors=10)
knn.fit(X, y)
y_pred = knn.predict(X)
from sklearn import metrics
metrics.accuracy_score(y,y_pred)
knn = KNeighborsClassifier(n_neighbors=1)
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0)
# import Matplotlib (scientific plotting library)
import matplotlib.pyplot as plt
import numpy as np
# try K=1 through K=9 and record testing accuracy
k1_range = range(1, 9)
k2_range = range(10, 40)
# create Python dictionary using
scores1 =
for k1 in k1_range:
knn = KNeighborsClassifier(n_neighbors=k1, metric='minkowski', p=2)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
scores1.append(metrics.accuracy_score(y_test, y_pred))
scores2 =
for k2 in k2_range:
knn = KNeighborsClassifier(n_neighbors=k2, metric='minkowski', p=2)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
scores2.append(metrics.accuracy_score(y_test, y_pred))
# plot the relationship between K and testing accuracy
# plt.plot(x_axis, y_axis)
plt.subplot(211)
plt.plot(k1_range, scores1)
plt.yticks(np.arange(0.93, 0.98, 0.03))
plt.xlabel('Number of neighbors')
plt.ylabel('Accuracy')
plt.subplot(212)
plt.plot(k2_range, scores2)
plt.yticks(np.arange(0.91, 0.98, 0.03))
plt.xlabel('Number of neighbors')
plt.ylabel('Accuracy')
plt.tight_layout()
plt.show()
Please see the attached file -
Please help me to correct the pictures as refer to the attached image file
python k-nn ai
New contributor
$endgroup$
add a comment |
$begingroup$
I get the answer but the output pictures are wrong - may I know which part on my programming is wrong
# read in the iris data
from sklearn.datasets import load_iris
iris = load_iris()
# create X (features) and y (response)
X = iris.data
y = iris.target
from sklearn.neighbors import KNeighborsClassifier
k1 = (1, 2, 3, 4, 5, 6, 7, 8, 9)
k2 = (10, 15, 20, 25, 30, 35, 40)
knn = KNeighborsClassifier(n_neighbors=10)
knn.fit(X, y)
y_pred = knn.predict(X)
from sklearn import metrics
metrics.accuracy_score(y,y_pred)
knn = KNeighborsClassifier(n_neighbors=1)
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0)
# import Matplotlib (scientific plotting library)
import matplotlib.pyplot as plt
import numpy as np
# try K=1 through K=9 and record testing accuracy
k1_range = range(1, 9)
k2_range = range(10, 40)
# create Python dictionary using
scores1 =
for k1 in k1_range:
knn = KNeighborsClassifier(n_neighbors=k1, metric='minkowski', p=2)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
scores1.append(metrics.accuracy_score(y_test, y_pred))
scores2 =
for k2 in k2_range:
knn = KNeighborsClassifier(n_neighbors=k2, metric='minkowski', p=2)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
scores2.append(metrics.accuracy_score(y_test, y_pred))
# plot the relationship between K and testing accuracy
# plt.plot(x_axis, y_axis)
plt.subplot(211)
plt.plot(k1_range, scores1)
plt.yticks(np.arange(0.93, 0.98, 0.03))
plt.xlabel('Number of neighbors')
plt.ylabel('Accuracy')
plt.subplot(212)
plt.plot(k2_range, scores2)
plt.yticks(np.arange(0.91, 0.98, 0.03))
plt.xlabel('Number of neighbors')
plt.ylabel('Accuracy')
plt.tight_layout()
plt.show()
Please see the attached file -
Please help me to correct the pictures as refer to the attached image file
python k-nn ai
New contributor
$endgroup$
I get the answer but the output pictures are wrong - may I know which part on my programming is wrong
# read in the iris data
from sklearn.datasets import load_iris
iris = load_iris()
# create X (features) and y (response)
X = iris.data
y = iris.target
from sklearn.neighbors import KNeighborsClassifier
k1 = (1, 2, 3, 4, 5, 6, 7, 8, 9)
k2 = (10, 15, 20, 25, 30, 35, 40)
knn = KNeighborsClassifier(n_neighbors=10)
knn.fit(X, y)
y_pred = knn.predict(X)
from sklearn import metrics
metrics.accuracy_score(y,y_pred)
knn = KNeighborsClassifier(n_neighbors=1)
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0)
# import Matplotlib (scientific plotting library)
import matplotlib.pyplot as plt
import numpy as np
# try K=1 through K=9 and record testing accuracy
k1_range = range(1, 9)
k2_range = range(10, 40)
# create Python dictionary using
scores1 =
for k1 in k1_range:
knn = KNeighborsClassifier(n_neighbors=k1, metric='minkowski', p=2)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
scores1.append(metrics.accuracy_score(y_test, y_pred))
scores2 =
for k2 in k2_range:
knn = KNeighborsClassifier(n_neighbors=k2, metric='minkowski', p=2)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
scores2.append(metrics.accuracy_score(y_test, y_pred))
# plot the relationship between K and testing accuracy
# plt.plot(x_axis, y_axis)
plt.subplot(211)
plt.plot(k1_range, scores1)
plt.yticks(np.arange(0.93, 0.98, 0.03))
plt.xlabel('Number of neighbors')
plt.ylabel('Accuracy')
plt.subplot(212)
plt.plot(k2_range, scores2)
plt.yticks(np.arange(0.91, 0.98, 0.03))
plt.xlabel('Number of neighbors')
plt.ylabel('Accuracy')
plt.tight_layout()
plt.show()
Please see the attached file -
Please help me to correct the pictures as refer to the attached image file
python k-nn ai
python k-nn ai
New contributor
New contributor
New contributor
asked 7 mins ago
vokoyovvokoyov
1
1
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
vokoyov is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49008%2fhow-to-correct-the-programming-for-knn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
vokoyov is a new contributor. Be nice, and check out our Code of Conduct.
vokoyov is a new contributor. Be nice, and check out our Code of Conduct.
vokoyov is a new contributor. Be nice, and check out our Code of Conduct.
vokoyov is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49008%2fhow-to-correct-the-programming-for-knn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown