Hyper parameters tuning XGBClassifier
$begingroup$
I am working on a highly imbalanced dataset for a competition.
The training data shape is : (166573, 14)
train['outcome'].value_counts()
0 159730
1 6843
I am using XGBClassifier for building model and the only parameter I manually set is scale_pos_weight : 23.34 (0 value counts / 1 value counts)
and it's giving around 82% under AUC metric.
I guess I can get much accuracy if I hypertune all other parameters.
XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
max_depth=3, min_child_weight=1, missing=None, n_estimators=100,
n_jobs=1, nthread=None, objective='binary:logistic', random_state=0,
reg_alpha=0, reg_lambda=1, scale_pos_weight=23.4, seed=None,
silent=True, subsample=1)
I tried GridSearchCV but it's taking a lot of time to complete on my local machine and I am not able to get any result back.
clf = XGBClassifier()
grid = GridSearchCV(clf,
params, n_jobs=-1,
scoring="roc_auc",
cv=3)
grid.fit(X_train, y_train)
print("Best: %f using %s" % (grid.best_score_, grid.best_params_))
What others parameters should I target to tune considering higly imbalanced dataset and how to run it so that I can actually get some results back?
xgboost cross-validation hyperparameter-tuning
New contributor
$endgroup$
add a comment |
$begingroup$
I am working on a highly imbalanced dataset for a competition.
The training data shape is : (166573, 14)
train['outcome'].value_counts()
0 159730
1 6843
I am using XGBClassifier for building model and the only parameter I manually set is scale_pos_weight : 23.34 (0 value counts / 1 value counts)
and it's giving around 82% under AUC metric.
I guess I can get much accuracy if I hypertune all other parameters.
XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
max_depth=3, min_child_weight=1, missing=None, n_estimators=100,
n_jobs=1, nthread=None, objective='binary:logistic', random_state=0,
reg_alpha=0, reg_lambda=1, scale_pos_weight=23.4, seed=None,
silent=True, subsample=1)
I tried GridSearchCV but it's taking a lot of time to complete on my local machine and I am not able to get any result back.
clf = XGBClassifier()
grid = GridSearchCV(clf,
params, n_jobs=-1,
scoring="roc_auc",
cv=3)
grid.fit(X_train, y_train)
print("Best: %f using %s" % (grid.best_score_, grid.best_params_))
What others parameters should I target to tune considering higly imbalanced dataset and how to run it so that I can actually get some results back?
xgboost cross-validation hyperparameter-tuning
New contributor
$endgroup$
add a comment |
$begingroup$
I am working on a highly imbalanced dataset for a competition.
The training data shape is : (166573, 14)
train['outcome'].value_counts()
0 159730
1 6843
I am using XGBClassifier for building model and the only parameter I manually set is scale_pos_weight : 23.34 (0 value counts / 1 value counts)
and it's giving around 82% under AUC metric.
I guess I can get much accuracy if I hypertune all other parameters.
XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
max_depth=3, min_child_weight=1, missing=None, n_estimators=100,
n_jobs=1, nthread=None, objective='binary:logistic', random_state=0,
reg_alpha=0, reg_lambda=1, scale_pos_weight=23.4, seed=None,
silent=True, subsample=1)
I tried GridSearchCV but it's taking a lot of time to complete on my local machine and I am not able to get any result back.
clf = XGBClassifier()
grid = GridSearchCV(clf,
params, n_jobs=-1,
scoring="roc_auc",
cv=3)
grid.fit(X_train, y_train)
print("Best: %f using %s" % (grid.best_score_, grid.best_params_))
What others parameters should I target to tune considering higly imbalanced dataset and how to run it so that I can actually get some results back?
xgboost cross-validation hyperparameter-tuning
New contributor
$endgroup$
I am working on a highly imbalanced dataset for a competition.
The training data shape is : (166573, 14)
train['outcome'].value_counts()
0 159730
1 6843
I am using XGBClassifier for building model and the only parameter I manually set is scale_pos_weight : 23.34 (0 value counts / 1 value counts)
and it's giving around 82% under AUC metric.
I guess I can get much accuracy if I hypertune all other parameters.
XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
max_depth=3, min_child_weight=1, missing=None, n_estimators=100,
n_jobs=1, nthread=None, objective='binary:logistic', random_state=0,
reg_alpha=0, reg_lambda=1, scale_pos_weight=23.4, seed=None,
silent=True, subsample=1)
I tried GridSearchCV but it's taking a lot of time to complete on my local machine and I am not able to get any result back.
clf = XGBClassifier()
grid = GridSearchCV(clf,
params, n_jobs=-1,
scoring="roc_auc",
cv=3)
grid.fit(X_train, y_train)
print("Best: %f using %s" % (grid.best_score_, grid.best_params_))
What others parameters should I target to tune considering higly imbalanced dataset and how to run it so that I can actually get some results back?
xgboost cross-validation hyperparameter-tuning
xgboost cross-validation hyperparameter-tuning
New contributor
New contributor
New contributor
asked 4 mins ago
PraveenksPraveenks
1062
1062
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Praveenks is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49746%2fhyper-parameters-tuning-xgbclassifier%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Praveenks is a new contributor. Be nice, and check out our Code of Conduct.
Praveenks is a new contributor. Be nice, and check out our Code of Conduct.
Praveenks is a new contributor. Be nice, and check out our Code of Conduct.
Praveenks is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49746%2fhyper-parameters-tuning-xgbclassifier%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown