SelectKBest returns best features in different order than manually filtering
$begingroup$
I'm trying to run a quick univariate filtering on some data, using a t-test of independence, since my target is binary. However, when I run the filter using sklearn
's SelectKBest
, I get the same top features returned doing a manual filter, but in different order. The only information about SelectKBest
I could find is here and the documentation, but both seem like they should work like my manual method. My code is
import numpy as np
from sklearn.feature_selection import SelectKBest
from scipy.stats import ttest_ind
np.random.seed(0)
data = np.random.random((100,50))
target = np.random.randint(2, size = 100).reshape((100,1))
X = data
y = target.ravel()
k = 10
p_values =
for i in range(data.shape[1]):
t, p = ttest_ind(data[:,i], target)
p_values.append([i,p])
p_values = sorted(p_values, key = lambda x: x[1])
p_values = p_values[:k]
# Indices of the ranked p-values
idx = [i[0] for i in p_values]
# SelectKBest features
mdl = SelectKBest(ttest_ind, k = k)
X_new = mdl.fit_transform(X, y)
# Manually selected k best features
X_new2=X[:,idx]
# Print first row of sklearn features
print(X_new[0])
array([0.4236548 , 0.96366276, 0.38344152, 0.87001215, 0.63992102,
0.52184832, 0.41466194, 0.06022547, 0.67063787, 0.31542835])
# Print first row of manually selected features
print(X_new2[0])
array([0.67063787, 0.4236548 , 0.31542835, 0.87001215, 0.38344152,
0.63992102, 0.06022547, 0.52184832, 0.41466194, 0.96366276])
Why aren't the features in the same order?
scikit-learn feature-selection
$endgroup$
add a comment |
$begingroup$
I'm trying to run a quick univariate filtering on some data, using a t-test of independence, since my target is binary. However, when I run the filter using sklearn
's SelectKBest
, I get the same top features returned doing a manual filter, but in different order. The only information about SelectKBest
I could find is here and the documentation, but both seem like they should work like my manual method. My code is
import numpy as np
from sklearn.feature_selection import SelectKBest
from scipy.stats import ttest_ind
np.random.seed(0)
data = np.random.random((100,50))
target = np.random.randint(2, size = 100).reshape((100,1))
X = data
y = target.ravel()
k = 10
p_values =
for i in range(data.shape[1]):
t, p = ttest_ind(data[:,i], target)
p_values.append([i,p])
p_values = sorted(p_values, key = lambda x: x[1])
p_values = p_values[:k]
# Indices of the ranked p-values
idx = [i[0] for i in p_values]
# SelectKBest features
mdl = SelectKBest(ttest_ind, k = k)
X_new = mdl.fit_transform(X, y)
# Manually selected k best features
X_new2=X[:,idx]
# Print first row of sklearn features
print(X_new[0])
array([0.4236548 , 0.96366276, 0.38344152, 0.87001215, 0.63992102,
0.52184832, 0.41466194, 0.06022547, 0.67063787, 0.31542835])
# Print first row of manually selected features
print(X_new2[0])
array([0.67063787, 0.4236548 , 0.31542835, 0.87001215, 0.38344152,
0.63992102, 0.06022547, 0.52184832, 0.41466194, 0.96366276])
Why aren't the features in the same order?
scikit-learn feature-selection
$endgroup$
add a comment |
$begingroup$
I'm trying to run a quick univariate filtering on some data, using a t-test of independence, since my target is binary. However, when I run the filter using sklearn
's SelectKBest
, I get the same top features returned doing a manual filter, but in different order. The only information about SelectKBest
I could find is here and the documentation, but both seem like they should work like my manual method. My code is
import numpy as np
from sklearn.feature_selection import SelectKBest
from scipy.stats import ttest_ind
np.random.seed(0)
data = np.random.random((100,50))
target = np.random.randint(2, size = 100).reshape((100,1))
X = data
y = target.ravel()
k = 10
p_values =
for i in range(data.shape[1]):
t, p = ttest_ind(data[:,i], target)
p_values.append([i,p])
p_values = sorted(p_values, key = lambda x: x[1])
p_values = p_values[:k]
# Indices of the ranked p-values
idx = [i[0] for i in p_values]
# SelectKBest features
mdl = SelectKBest(ttest_ind, k = k)
X_new = mdl.fit_transform(X, y)
# Manually selected k best features
X_new2=X[:,idx]
# Print first row of sklearn features
print(X_new[0])
array([0.4236548 , 0.96366276, 0.38344152, 0.87001215, 0.63992102,
0.52184832, 0.41466194, 0.06022547, 0.67063787, 0.31542835])
# Print first row of manually selected features
print(X_new2[0])
array([0.67063787, 0.4236548 , 0.31542835, 0.87001215, 0.38344152,
0.63992102, 0.06022547, 0.52184832, 0.41466194, 0.96366276])
Why aren't the features in the same order?
scikit-learn feature-selection
$endgroup$
I'm trying to run a quick univariate filtering on some data, using a t-test of independence, since my target is binary. However, when I run the filter using sklearn
's SelectKBest
, I get the same top features returned doing a manual filter, but in different order. The only information about SelectKBest
I could find is here and the documentation, but both seem like they should work like my manual method. My code is
import numpy as np
from sklearn.feature_selection import SelectKBest
from scipy.stats import ttest_ind
np.random.seed(0)
data = np.random.random((100,50))
target = np.random.randint(2, size = 100).reshape((100,1))
X = data
y = target.ravel()
k = 10
p_values =
for i in range(data.shape[1]):
t, p = ttest_ind(data[:,i], target)
p_values.append([i,p])
p_values = sorted(p_values, key = lambda x: x[1])
p_values = p_values[:k]
# Indices of the ranked p-values
idx = [i[0] for i in p_values]
# SelectKBest features
mdl = SelectKBest(ttest_ind, k = k)
X_new = mdl.fit_transform(X, y)
# Manually selected k best features
X_new2=X[:,idx]
# Print first row of sklearn features
print(X_new[0])
array([0.4236548 , 0.96366276, 0.38344152, 0.87001215, 0.63992102,
0.52184832, 0.41466194, 0.06022547, 0.67063787, 0.31542835])
# Print first row of manually selected features
print(X_new2[0])
array([0.67063787, 0.4236548 , 0.31542835, 0.87001215, 0.38344152,
0.63992102, 0.06022547, 0.52184832, 0.41466194, 0.96366276])
Why aren't the features in the same order?
scikit-learn feature-selection
scikit-learn feature-selection
asked 5 mins ago
HS-nebulaHS-nebula
1065
1065
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f51118%2fselectkbest-returns-best-features-in-different-order-than-manually-filtering%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f51118%2fselectkbest-returns-best-features-in-different-order-than-manually-filtering%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown