How to custom build a convolution generator network?












0












$begingroup$


I learned GAN's by using mnist dataset(28x28) and codes available in the web. Now I am trying to build a GAN for dataset with images containing custom channel, rows, columns. eg:(3,300,200). I have used this code as generator for mnist-GAN



nch = 200
g_input = Input(shape=[100])
H = Dense(nch*14*14, init='glorot_normal')(g_input)
H = BatchNormalization(mode=2)(H)
H = Activation('relu')(H)
H = Reshape( [nch, 14, 14] )(H)
H = UpSampling2D(size=(2, 2))(H)
H = Convolution2D(nch/2, 3, 3, border_mode='same', init='glorot_uniform')(H)
H = BatchNormalization(mode=2)(H)
H = Activation('relu')(H)
H = Convolution2D(nch/4, 3, 3, border_mode='same', init='glorot_uniform')(H)
H = BatchNormalization(mode=2)(H)
H = Activation('relu')(H)
H = Convolution2D(1, 1, 1, border_mode='same', init='glorot_uniform')(H)
g_V = Activation('sigmoid')(H)
generator = Model(g_input,g_V)
generator.compile(loss='binary_crossentropy', optimizer=opt)
generator.summary()


What is the right way to build a generator with custom output shape?



Is there any simple GUI tool to build and visualize convolution model like this before coding it in a coding environment like keras,tensorflow,pytorch etc?










share|improve this question









$endgroup$

















    0












    $begingroup$


    I learned GAN's by using mnist dataset(28x28) and codes available in the web. Now I am trying to build a GAN for dataset with images containing custom channel, rows, columns. eg:(3,300,200). I have used this code as generator for mnist-GAN



    nch = 200
    g_input = Input(shape=[100])
    H = Dense(nch*14*14, init='glorot_normal')(g_input)
    H = BatchNormalization(mode=2)(H)
    H = Activation('relu')(H)
    H = Reshape( [nch, 14, 14] )(H)
    H = UpSampling2D(size=(2, 2))(H)
    H = Convolution2D(nch/2, 3, 3, border_mode='same', init='glorot_uniform')(H)
    H = BatchNormalization(mode=2)(H)
    H = Activation('relu')(H)
    H = Convolution2D(nch/4, 3, 3, border_mode='same', init='glorot_uniform')(H)
    H = BatchNormalization(mode=2)(H)
    H = Activation('relu')(H)
    H = Convolution2D(1, 1, 1, border_mode='same', init='glorot_uniform')(H)
    g_V = Activation('sigmoid')(H)
    generator = Model(g_input,g_V)
    generator.compile(loss='binary_crossentropy', optimizer=opt)
    generator.summary()


    What is the right way to build a generator with custom output shape?



    Is there any simple GUI tool to build and visualize convolution model like this before coding it in a coding environment like keras,tensorflow,pytorch etc?










    share|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I learned GAN's by using mnist dataset(28x28) and codes available in the web. Now I am trying to build a GAN for dataset with images containing custom channel, rows, columns. eg:(3,300,200). I have used this code as generator for mnist-GAN



      nch = 200
      g_input = Input(shape=[100])
      H = Dense(nch*14*14, init='glorot_normal')(g_input)
      H = BatchNormalization(mode=2)(H)
      H = Activation('relu')(H)
      H = Reshape( [nch, 14, 14] )(H)
      H = UpSampling2D(size=(2, 2))(H)
      H = Convolution2D(nch/2, 3, 3, border_mode='same', init='glorot_uniform')(H)
      H = BatchNormalization(mode=2)(H)
      H = Activation('relu')(H)
      H = Convolution2D(nch/4, 3, 3, border_mode='same', init='glorot_uniform')(H)
      H = BatchNormalization(mode=2)(H)
      H = Activation('relu')(H)
      H = Convolution2D(1, 1, 1, border_mode='same', init='glorot_uniform')(H)
      g_V = Activation('sigmoid')(H)
      generator = Model(g_input,g_V)
      generator.compile(loss='binary_crossentropy', optimizer=opt)
      generator.summary()


      What is the right way to build a generator with custom output shape?



      Is there any simple GUI tool to build and visualize convolution model like this before coding it in a coding environment like keras,tensorflow,pytorch etc?










      share|improve this question









      $endgroup$




      I learned GAN's by using mnist dataset(28x28) and codes available in the web. Now I am trying to build a GAN for dataset with images containing custom channel, rows, columns. eg:(3,300,200). I have used this code as generator for mnist-GAN



      nch = 200
      g_input = Input(shape=[100])
      H = Dense(nch*14*14, init='glorot_normal')(g_input)
      H = BatchNormalization(mode=2)(H)
      H = Activation('relu')(H)
      H = Reshape( [nch, 14, 14] )(H)
      H = UpSampling2D(size=(2, 2))(H)
      H = Convolution2D(nch/2, 3, 3, border_mode='same', init='glorot_uniform')(H)
      H = BatchNormalization(mode=2)(H)
      H = Activation('relu')(H)
      H = Convolution2D(nch/4, 3, 3, border_mode='same', init='glorot_uniform')(H)
      H = BatchNormalization(mode=2)(H)
      H = Activation('relu')(H)
      H = Convolution2D(1, 1, 1, border_mode='same', init='glorot_uniform')(H)
      g_V = Activation('sigmoid')(H)
      generator = Model(g_input,g_V)
      generator.compile(loss='binary_crossentropy', optimizer=opt)
      generator.summary()


      What is the right way to build a generator with custom output shape?



      Is there any simple GUI tool to build and visualize convolution model like this before coding it in a coding environment like keras,tensorflow,pytorch etc?







      deep-learning keras convnet gan generative-models






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 11 mins ago









      EkaEka

      1023




      1023






















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "557"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48652%2fhow-to-custom-build-a-convolution-generator-network%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48652%2fhow-to-custom-build-a-convolution-generator-network%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ponta tanko

          Tantalo (mitologio)

          Erzsébet Schaár