How to custom build a convolution generator network?
$begingroup$
I learned GAN's by using mnist dataset(28x28) and codes available in the web. Now I am trying to build a GAN for dataset with images containing custom channel, rows, columns. eg:(3,300,200). I have used this code as generator for mnist-GAN
nch = 200
g_input = Input(shape=[100])
H = Dense(nch*14*14, init='glorot_normal')(g_input)
H = BatchNormalization(mode=2)(H)
H = Activation('relu')(H)
H = Reshape( [nch, 14, 14] )(H)
H = UpSampling2D(size=(2, 2))(H)
H = Convolution2D(nch/2, 3, 3, border_mode='same', init='glorot_uniform')(H)
H = BatchNormalization(mode=2)(H)
H = Activation('relu')(H)
H = Convolution2D(nch/4, 3, 3, border_mode='same', init='glorot_uniform')(H)
H = BatchNormalization(mode=2)(H)
H = Activation('relu')(H)
H = Convolution2D(1, 1, 1, border_mode='same', init='glorot_uniform')(H)
g_V = Activation('sigmoid')(H)
generator = Model(g_input,g_V)
generator.compile(loss='binary_crossentropy', optimizer=opt)
generator.summary()
What is the right way to build a generator with custom output shape?
Is there any simple GUI tool to build and visualize convolution model like this before coding it in a coding environment like keras,tensorflow,pytorch etc?
deep-learning keras convnet gan generative-models
$endgroup$
add a comment |
$begingroup$
I learned GAN's by using mnist dataset(28x28) and codes available in the web. Now I am trying to build a GAN for dataset with images containing custom channel, rows, columns. eg:(3,300,200). I have used this code as generator for mnist-GAN
nch = 200
g_input = Input(shape=[100])
H = Dense(nch*14*14, init='glorot_normal')(g_input)
H = BatchNormalization(mode=2)(H)
H = Activation('relu')(H)
H = Reshape( [nch, 14, 14] )(H)
H = UpSampling2D(size=(2, 2))(H)
H = Convolution2D(nch/2, 3, 3, border_mode='same', init='glorot_uniform')(H)
H = BatchNormalization(mode=2)(H)
H = Activation('relu')(H)
H = Convolution2D(nch/4, 3, 3, border_mode='same', init='glorot_uniform')(H)
H = BatchNormalization(mode=2)(H)
H = Activation('relu')(H)
H = Convolution2D(1, 1, 1, border_mode='same', init='glorot_uniform')(H)
g_V = Activation('sigmoid')(H)
generator = Model(g_input,g_V)
generator.compile(loss='binary_crossentropy', optimizer=opt)
generator.summary()
What is the right way to build a generator with custom output shape?
Is there any simple GUI tool to build and visualize convolution model like this before coding it in a coding environment like keras,tensorflow,pytorch etc?
deep-learning keras convnet gan generative-models
$endgroup$
add a comment |
$begingroup$
I learned GAN's by using mnist dataset(28x28) and codes available in the web. Now I am trying to build a GAN for dataset with images containing custom channel, rows, columns. eg:(3,300,200). I have used this code as generator for mnist-GAN
nch = 200
g_input = Input(shape=[100])
H = Dense(nch*14*14, init='glorot_normal')(g_input)
H = BatchNormalization(mode=2)(H)
H = Activation('relu')(H)
H = Reshape( [nch, 14, 14] )(H)
H = UpSampling2D(size=(2, 2))(H)
H = Convolution2D(nch/2, 3, 3, border_mode='same', init='glorot_uniform')(H)
H = BatchNormalization(mode=2)(H)
H = Activation('relu')(H)
H = Convolution2D(nch/4, 3, 3, border_mode='same', init='glorot_uniform')(H)
H = BatchNormalization(mode=2)(H)
H = Activation('relu')(H)
H = Convolution2D(1, 1, 1, border_mode='same', init='glorot_uniform')(H)
g_V = Activation('sigmoid')(H)
generator = Model(g_input,g_V)
generator.compile(loss='binary_crossentropy', optimizer=opt)
generator.summary()
What is the right way to build a generator with custom output shape?
Is there any simple GUI tool to build and visualize convolution model like this before coding it in a coding environment like keras,tensorflow,pytorch etc?
deep-learning keras convnet gan generative-models
$endgroup$
I learned GAN's by using mnist dataset(28x28) and codes available in the web. Now I am trying to build a GAN for dataset with images containing custom channel, rows, columns. eg:(3,300,200). I have used this code as generator for mnist-GAN
nch = 200
g_input = Input(shape=[100])
H = Dense(nch*14*14, init='glorot_normal')(g_input)
H = BatchNormalization(mode=2)(H)
H = Activation('relu')(H)
H = Reshape( [nch, 14, 14] )(H)
H = UpSampling2D(size=(2, 2))(H)
H = Convolution2D(nch/2, 3, 3, border_mode='same', init='glorot_uniform')(H)
H = BatchNormalization(mode=2)(H)
H = Activation('relu')(H)
H = Convolution2D(nch/4, 3, 3, border_mode='same', init='glorot_uniform')(H)
H = BatchNormalization(mode=2)(H)
H = Activation('relu')(H)
H = Convolution2D(1, 1, 1, border_mode='same', init='glorot_uniform')(H)
g_V = Activation('sigmoid')(H)
generator = Model(g_input,g_V)
generator.compile(loss='binary_crossentropy', optimizer=opt)
generator.summary()
What is the right way to build a generator with custom output shape?
Is there any simple GUI tool to build and visualize convolution model like this before coding it in a coding environment like keras,tensorflow,pytorch etc?
deep-learning keras convnet gan generative-models
deep-learning keras convnet gan generative-models
asked 11 mins ago
EkaEka
1023
1023
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48652%2fhow-to-custom-build-a-convolution-generator-network%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48652%2fhow-to-custom-build-a-convolution-generator-network%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown