How to get probabilities values with keras?
$begingroup$
tensorflow version = '1.12.0'
keras version = '2.1.6-tf'
I'm using keras with tensorflow backend.
I want to get the probabilities values of the prediction.
I want the probabilities to sum up to 1.
I tried using 'softmax' and 'categorical_crossentropy' but nothing works.
This is my model:
X = pickle.load(open("X.pickle", "rb"))
y = pickle.load(open("y.pickle", "rb"))
number_of_gestures = 5
y = to_categorical(y, num_classes=number_of_gestures) #to_categorical is a function from keras - np_utils.
model = Sequential()
model.add(Conv2D(16, (2,2), input_shape=(IMG_SIZE, IMG_SIZE, 1), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'))
model.add(Conv2D(32, (5,5), activation='relu'))
model.add(MaxPooling2D(pool_size=(5, 5), strides=(5, 5), padding='same'))
model.add(Conv2D(64, (5,5), activation='relu'))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(number_of_gestures, activation='softmax'))
sgd = optimizers.SGD(lr=1e-2)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
model.fit(X, y, batch_size=500, epochs=40, validation_split=0.1)
The probabilities looks like that:
[1. 0. 0. 0. 0.]
And I want it to look like this:
[0.897. 0.023. 0.158. 0.780. 0.1021]
I know it does not sum up to 1 but this is just an example.
python keras tensorflow cnn probability
New contributor
$endgroup$
add a comment |
$begingroup$
tensorflow version = '1.12.0'
keras version = '2.1.6-tf'
I'm using keras with tensorflow backend.
I want to get the probabilities values of the prediction.
I want the probabilities to sum up to 1.
I tried using 'softmax' and 'categorical_crossentropy' but nothing works.
This is my model:
X = pickle.load(open("X.pickle", "rb"))
y = pickle.load(open("y.pickle", "rb"))
number_of_gestures = 5
y = to_categorical(y, num_classes=number_of_gestures) #to_categorical is a function from keras - np_utils.
model = Sequential()
model.add(Conv2D(16, (2,2), input_shape=(IMG_SIZE, IMG_SIZE, 1), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'))
model.add(Conv2D(32, (5,5), activation='relu'))
model.add(MaxPooling2D(pool_size=(5, 5), strides=(5, 5), padding='same'))
model.add(Conv2D(64, (5,5), activation='relu'))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(number_of_gestures, activation='softmax'))
sgd = optimizers.SGD(lr=1e-2)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
model.fit(X, y, batch_size=500, epochs=40, validation_split=0.1)
The probabilities looks like that:
[1. 0. 0. 0. 0.]
And I want it to look like this:
[0.897. 0.023. 0.158. 0.780. 0.1021]
I know it does not sum up to 1 but this is just an example.
python keras tensorflow cnn probability
New contributor
$endgroup$
add a comment |
$begingroup$
tensorflow version = '1.12.0'
keras version = '2.1.6-tf'
I'm using keras with tensorflow backend.
I want to get the probabilities values of the prediction.
I want the probabilities to sum up to 1.
I tried using 'softmax' and 'categorical_crossentropy' but nothing works.
This is my model:
X = pickle.load(open("X.pickle", "rb"))
y = pickle.load(open("y.pickle", "rb"))
number_of_gestures = 5
y = to_categorical(y, num_classes=number_of_gestures) #to_categorical is a function from keras - np_utils.
model = Sequential()
model.add(Conv2D(16, (2,2), input_shape=(IMG_SIZE, IMG_SIZE, 1), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'))
model.add(Conv2D(32, (5,5), activation='relu'))
model.add(MaxPooling2D(pool_size=(5, 5), strides=(5, 5), padding='same'))
model.add(Conv2D(64, (5,5), activation='relu'))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(number_of_gestures, activation='softmax'))
sgd = optimizers.SGD(lr=1e-2)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
model.fit(X, y, batch_size=500, epochs=40, validation_split=0.1)
The probabilities looks like that:
[1. 0. 0. 0. 0.]
And I want it to look like this:
[0.897. 0.023. 0.158. 0.780. 0.1021]
I know it does not sum up to 1 but this is just an example.
python keras tensorflow cnn probability
New contributor
$endgroup$
tensorflow version = '1.12.0'
keras version = '2.1.6-tf'
I'm using keras with tensorflow backend.
I want to get the probabilities values of the prediction.
I want the probabilities to sum up to 1.
I tried using 'softmax' and 'categorical_crossentropy' but nothing works.
This is my model:
X = pickle.load(open("X.pickle", "rb"))
y = pickle.load(open("y.pickle", "rb"))
number_of_gestures = 5
y = to_categorical(y, num_classes=number_of_gestures) #to_categorical is a function from keras - np_utils.
model = Sequential()
model.add(Conv2D(16, (2,2), input_shape=(IMG_SIZE, IMG_SIZE, 1), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'))
model.add(Conv2D(32, (5,5), activation='relu'))
model.add(MaxPooling2D(pool_size=(5, 5), strides=(5, 5), padding='same'))
model.add(Conv2D(64, (5,5), activation='relu'))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(number_of_gestures, activation='softmax'))
sgd = optimizers.SGD(lr=1e-2)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
model.fit(X, y, batch_size=500, epochs=40, validation_split=0.1)
The probabilities looks like that:
[1. 0. 0. 0. 0.]
And I want it to look like this:
[0.897. 0.023. 0.158. 0.780. 0.1021]
I know it does not sum up to 1 but this is just an example.
python keras tensorflow cnn probability
python keras tensorflow cnn probability
New contributor
New contributor
edited 5 hours ago
KarmaPl
New contributor
asked 5 hours ago
KarmaPlKarmaPl
11
11
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
KarmaPl is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45416%2fhow-to-get-probabilities-values-with-keras%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
KarmaPl is a new contributor. Be nice, and check out our Code of Conduct.
KarmaPl is a new contributor. Be nice, and check out our Code of Conduct.
KarmaPl is a new contributor. Be nice, and check out our Code of Conduct.
KarmaPl is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45416%2fhow-to-get-probabilities-values-with-keras%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown