Regression loss function is nan
$begingroup$
I'm beginner with ANN and DL in general. I have a regression task with target of 2 dimensions, my dataset has only 46 samples (small dataset I think).
I tried the code (below) for a regression with only 1 output, it works normally.
When I change to 2-dimensions Regression, I get a loss function = NaN
I tried to change the optimizer and fix the dropout rate, but nothing changed, any solution?
thank you for your help in advance.
import numpy
import pandas
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
#load data
dataframe = pandas.read_excel("data1.xlsx")
dataframe.isnull().any()
dataset = dataframe.values
#print (dataset)
X = dataset[:, 0:5]
Y = dataset[:,5:7]
def baseline_model():
#create model
model = Sequential()
model.add(Dense(10, input_dim=5, kernel_initializer='normal', activation
='relu'))
model.add(Dropout(0.5))
model.add(Dense(2, kernel_initializer='normal'))
#compile model
#model.compile(loss='sparse_categorical_crossentropy', optimizer='adam')
model.compile(loss='mean_squared_error', optimizer='adam')
return model
#fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
estimators=
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasRegressor(build_fn=baseline_model, epochs=50,
batch_size=32, verbose=0)))
pipeline = Pipeline(estimators)
kfold = KFold(n_splits=10, random_state = seed)
results = cross_val_score(pipeline, X, Y, cv=kfold)
print ("Result: %.2f (%.2f) MSE" %(results.mean(), results.std()))
python neural-network keras regression
New contributor
$endgroup$
add a comment |
$begingroup$
I'm beginner with ANN and DL in general. I have a regression task with target of 2 dimensions, my dataset has only 46 samples (small dataset I think).
I tried the code (below) for a regression with only 1 output, it works normally.
When I change to 2-dimensions Regression, I get a loss function = NaN
I tried to change the optimizer and fix the dropout rate, but nothing changed, any solution?
thank you for your help in advance.
import numpy
import pandas
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
#load data
dataframe = pandas.read_excel("data1.xlsx")
dataframe.isnull().any()
dataset = dataframe.values
#print (dataset)
X = dataset[:, 0:5]
Y = dataset[:,5:7]
def baseline_model():
#create model
model = Sequential()
model.add(Dense(10, input_dim=5, kernel_initializer='normal', activation
='relu'))
model.add(Dropout(0.5))
model.add(Dense(2, kernel_initializer='normal'))
#compile model
#model.compile(loss='sparse_categorical_crossentropy', optimizer='adam')
model.compile(loss='mean_squared_error', optimizer='adam')
return model
#fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
estimators=
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasRegressor(build_fn=baseline_model, epochs=50,
batch_size=32, verbose=0)))
pipeline = Pipeline(estimators)
kfold = KFold(n_splits=10, random_state = seed)
results = cross_val_score(pipeline, X, Y, cv=kfold)
print ("Result: %.2f (%.2f) MSE" %(results.mean(), results.std()))
python neural-network keras regression
New contributor
$endgroup$
add a comment |
$begingroup$
I'm beginner with ANN and DL in general. I have a regression task with target of 2 dimensions, my dataset has only 46 samples (small dataset I think).
I tried the code (below) for a regression with only 1 output, it works normally.
When I change to 2-dimensions Regression, I get a loss function = NaN
I tried to change the optimizer and fix the dropout rate, but nothing changed, any solution?
thank you for your help in advance.
import numpy
import pandas
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
#load data
dataframe = pandas.read_excel("data1.xlsx")
dataframe.isnull().any()
dataset = dataframe.values
#print (dataset)
X = dataset[:, 0:5]
Y = dataset[:,5:7]
def baseline_model():
#create model
model = Sequential()
model.add(Dense(10, input_dim=5, kernel_initializer='normal', activation
='relu'))
model.add(Dropout(0.5))
model.add(Dense(2, kernel_initializer='normal'))
#compile model
#model.compile(loss='sparse_categorical_crossentropy', optimizer='adam')
model.compile(loss='mean_squared_error', optimizer='adam')
return model
#fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
estimators=
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasRegressor(build_fn=baseline_model, epochs=50,
batch_size=32, verbose=0)))
pipeline = Pipeline(estimators)
kfold = KFold(n_splits=10, random_state = seed)
results = cross_val_score(pipeline, X, Y, cv=kfold)
print ("Result: %.2f (%.2f) MSE" %(results.mean(), results.std()))
python neural-network keras regression
New contributor
$endgroup$
I'm beginner with ANN and DL in general. I have a regression task with target of 2 dimensions, my dataset has only 46 samples (small dataset I think).
I tried the code (below) for a regression with only 1 output, it works normally.
When I change to 2-dimensions Regression, I get a loss function = NaN
I tried to change the optimizer and fix the dropout rate, but nothing changed, any solution?
thank you for your help in advance.
import numpy
import pandas
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
#load data
dataframe = pandas.read_excel("data1.xlsx")
dataframe.isnull().any()
dataset = dataframe.values
#print (dataset)
X = dataset[:, 0:5]
Y = dataset[:,5:7]
def baseline_model():
#create model
model = Sequential()
model.add(Dense(10, input_dim=5, kernel_initializer='normal', activation
='relu'))
model.add(Dropout(0.5))
model.add(Dense(2, kernel_initializer='normal'))
#compile model
#model.compile(loss='sparse_categorical_crossentropy', optimizer='adam')
model.compile(loss='mean_squared_error', optimizer='adam')
return model
#fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
estimators=
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasRegressor(build_fn=baseline_model, epochs=50,
batch_size=32, verbose=0)))
pipeline = Pipeline(estimators)
kfold = KFold(n_splits=10, random_state = seed)
results = cross_val_score(pipeline, X, Y, cv=kfold)
print ("Result: %.2f (%.2f) MSE" %(results.mean(), results.std()))
python neural-network keras regression
python neural-network keras regression
New contributor
New contributor
New contributor
asked 15 mins ago
Kikio.1Kikio.1
62
62
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Kikio.1 is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f44302%2fregression-loss-function-is-nan%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Kikio.1 is a new contributor. Be nice, and check out our Code of Conduct.
Kikio.1 is a new contributor. Be nice, and check out our Code of Conduct.
Kikio.1 is a new contributor. Be nice, and check out our Code of Conduct.
Kikio.1 is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f44302%2fregression-loss-function-is-nan%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown